show that
$$\int_{0}^{\infty } \frac{\sin (ax)}{x(x^2+b^2)^2}dx=\frac{\pi}{2b^4}\left(1-\frac{e^{-ab}(ab+2)}{2}\right)$$
for $a,b> 0$
I would like someone solve it using contour but also I would to see different solution using different way to solve it
is there any help
thanks for all
Answer
$$\int_0^{\infty} \frac{\sin ax\,dx}{x(x^2+b^2)^2}=\frac{1}{b^4}\left(\int_0^{\infty}\frac{\sin ax}{x}\,dx-\int_0^{\infty}\frac{x\sin ax\,dx}{x^2+b^2}\right)-\frac{1}{b^2}\int_0^{\infty}\frac{x\sin ax\,dx}{(x^2+b^2)^2}$$
The first integral is well known. For any $a>0:$
$$\int_0^{\infty} \frac{\sin ax}{x}\,dx=\frac{\pi}{2}$$
The second, consider:
$$\begin{aligned}f(t)=\int_0^{ \infty} \frac{x\sin axt\,dx}{x^2+b^2}\,dx \Rightarrow \mathcal{L} \{ f(t)\} &=\int_0^{ \infty}e^{-st}\int_0^{ \infty}\frac{x\sin axt\,dx}{x^2+ b^2}\,dx\,dt\\&=\int_0^{ \infty}\frac{x}{x^2+ b^2}\int_0^{\infty}e^{-st}\sin axt\,dt\,dx\\&=\int_0^{\infty} \frac{ax^2}{(x^2+ b^2)(a^2x^2+s^2)} \,dx\\&= \frac{\pi}{2(s+ab)}\end{aligned}$$
$$\frac{\pi}{2}\cdot\mathcal{L}^{-1}\left\{ \frac{1}{s+ab}\right\}\Bigg|_{t=1}= \frac{\pi}{2e^{ab}}$$
The third, using the same parameter (call the function $g(t)$ now) one obtains:
$$\begin{aligned}\mathcal{L} \{ g(t)\} &=\int_0^{ \infty}\frac{x}{(x^2+ b^2)^2}\int_0^{\infty}e^{-st}\sin axt\,dt\,dx\\&=\int_0^{\infty} \frac{ax^2}{(x^2+ b^2)^2(a^2x^2+s^2)} \,dx\\&= \frac{a\pi}{4b(s+ab)^2}\end{aligned}$$
$$\frac{\pi a}{4b}\cdot\mathcal{L}^{-1}\left\{ \frac{1}{(s+ab)^2}\right\}\Bigg|_{t=1}= \frac{a\pi}{4be^{ab}}$$
Therefore:
$$\int_0^{\infty} \frac{\sin ax\,dx}{x(x^2+b^2)^2}=\frac{\pi}{2b^4}\left(1-\frac{2+ab}{2e^{ab}}\right)$$
No comments:
Post a Comment