k∈N
The inverse of the sum bk:=k∑j=1(−1)k−j(kj)jkaj is obviously
ak=k∑j=1(k−1j−1)bjkj .
How can one proof it (in a clear manner)?
Thanks in advance.
Background of the question:
It’s ∞∑k=1bkk!∞∫0(tet−1)kdt=∞∑k=1akk with bk:=k∑j=1(−1)k−j(kj)jkaj.
Note:
A special case is ak:=1kn with n∈N and therefore bk=k∑j=1(−1)k−j(kj)jk−n (see Stirling numbers of the second kind)
n∑k=1bkk!∞∫0(tet−1)kdt=ζ(n+1) and the invers equation can be found in A formula for ∞∫0(xex−1)ndx .
Answer
In this proof, the binomial identity
(mn)(ns)=(ms)(m−sn−s)
for all integers m,n,s with 0≤s≤n≤m is used frequently, without being specifically mentioned. A particular case of importance is when s=1, where it is given by
n(mn)=m(m−1n−1).
First, rewrite
bk=kk∑j=1(−1)k−j(k−1j−1)jk−1aj.
Then,
l∑k=1(l−1k−1)bklk=l∑k=1(l−1k−1)klkk∑j=1(−1)k−j(k−1j−1)jk−1aj.
Thus,
l∑k=1(l−1k−1)bklk=l∑j=1ajjl∑k=j(−1)k−j(l−1k−1)(k−1j−1)k(jl)k=l∑j=1ajj(l−1j−1)l∑k=j(−1)k−j(l−jk−j)k(jl)k.
Let r:=k−j. We have
l∑k=1(l−1k−1)bklk=l∑j=1ajj(l−1j−1)(jl)jl−j∑r=0(−1)r(l−jr)(r+j)(jl)r.
Now, if j=l, then
l−j∑r=0(−1)r(l−jr)(r+j)(jl)r=l.
If $j
and
l−j∑r=0(−1)r(l−jr)j(jl)r=j(1−jl)l−j.
Consequently,
$$\sum_{r=0}^{l-j}\,(-1)^r\,\binom{l-j}{r}\,(r+j)\,\left(\frac{j}{l}\right)^{r}=\begin{cases}
0\,,&\text{if }j
\end{cases}From(∗),\sum_{k=1}^l\,\binom{l-1}{k-1}\,\frac{b_k}{l^k}=\frac{a_l}{l}\,\binom{l-1}{l-1}\,\left(\frac{l}{l}\right)^l\,l=a_l\,.$$
No comments:
Post a Comment