Friday, 24 August 2018

analysis - Inverse of the sum sumlimitskj=1(1)kjbinomkjj,kaj



kN



The inverse of the sum bk:=kj=1(1)kj(kj)jkaj is obviously

ak=kj=1(k1j1)bjkj .



How can one proof it (in a clear manner)?



Thanks in advance.






Background of the question:




It’s k=1bkk!0(tet1)kdt=k=1akk with bk:=kj=1(1)kj(kj)jkaj.



Note:



A special case is ak:=1kn with nN and therefore bk=kj=1(1)kj(kj)jkn (see Stirling numbers of the second kind)
nk=1bkk!0(tet1)kdt=ζ(n+1) and the invers equation can be found in A formula for 0(xex1)ndx .


Answer



In this proof, the binomial identity
(mn)(ns)=(ms)(msns)
for all integers m,n,s with 0snm is used frequently, without being specifically mentioned. A particular case of importance is when s=1, where it is given by

n(mn)=m(m1n1).



First, rewrite
bk=kkj=1(1)kj(k1j1)jk1aj.
Then,
lk=1(l1k1)bklk=lk=1(l1k1)klkkj=1(1)kj(k1j1)jk1aj.
Thus,
lk=1(l1k1)bklk=lj=1ajjlk=j(1)kj(l1k1)(k1j1)k(jl)k=lj=1ajj(l1j1)lk=j(1)kj(ljkj)k(jl)k.
Let r:=kj. We have
lk=1(l1k1)bklk=lj=1ajj(l1j1)(jl)jljr=0(1)r(ljr)(r+j)(jl)r.



Now, if j=l, then
ljr=0(1)r(ljr)(r+j)(jl)r=l.
If $jljr=0(1)r(ljr)r(jl)r=(lj)(jl)ljr=1(1)r1(lj1r1)(jl)r1=j(1jl)(1jl)lj1=j(1jl)lj
and
ljr=0(1)r(ljr)j(jl)r=j(1jl)lj.
Consequently,
$$\sum_{r=0}^{l-j}\,(-1)^r\,\binom{l-j}{r}\,(r+j)\,\left(\frac{j}{l}\right)^{r}=\begin{cases}
0\,,&\text{if }jl\,,&\text{if }j=l\,.
\end{cases}From(),\sum_{k=1}^l\,\binom{l-1}{k-1}\,\frac{b_k}{l^k}=\frac{a_l}{l}\,\binom{l-1}{l-1}\,\left(\frac{l}{l}\right)^l\,l=a_l\,.$$


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...