Problem: test if the series converges$$\sum_{n=1}^ \infty \frac {(-2)^{n+1}} {n^{n+1}} $$
My approach:
I see it is equal to $$\sum_{n=1}^ \infty \frac {(-2)^n} {n^n} \cdot \frac {-2} n$$, and $\sum_{n=1}^ \infty \frac {(-2)^n} {n^n}$ converges absolutely using root test, and $\sum_{n=1}^ \infty \frac {-2} n $ diverges by using p-series test.
So is the original series divergent because convergent * divergent = divergent?
Is convergent * convergent = convergent??
No comments:
Post a Comment