Monday, 13 August 2018

sequences and series - Convergence using Root Test

Problem: test if the series converges$$\sum_{n=1}^ \infty \frac {(-2)^{n+1}} {n^{n+1}} $$



My approach:



I see it is equal to $$\sum_{n=1}^ \infty \frac {(-2)^n} {n^n} \cdot \frac {-2} n$$, and $\sum_{n=1}^ \infty \frac {(-2)^n} {n^n}$ converges absolutely using root test, and $\sum_{n=1}^ \infty \frac {-2} n $ diverges by using p-series test.



So is the original series divergent because convergent * divergent = divergent?




Is convergent * convergent = convergent??

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...