Can anyone show me how I can prove that $\sin x \cos (3x) = \frac{1}{4} \sin (7x) - \frac{1}{4}\sin (5x) + \frac{1}{2}\sin x$?
I tried using Euler's formulae
$$\sin x= \frac{e^{ix}-e^{-ix}}{2i}$$
and
$$\cos x = \frac{e^{ix}+e^{-ix}}{2}$$
but the simplification didn't help at all.
PS: Simplify starting from the left.
Tuesday, 7 August 2018
trigonometry - Application Of De Moivre & Euler's Formulae
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment