Tuesday, 7 August 2018

trigonometry - Application Of De Moivre & Euler's Formulae

Can anyone show me how I can prove that $\sin x \cos (3x) = \frac{1}{4} \sin (7x) - \frac{1}{4}\sin (5x) + \frac{1}{2}\sin x$?
I tried using Euler's formulae
$$\sin x= \frac{e^{ix}-e^{-ix}}{2i}$$
and
$$\cos x = \frac{e^{ix}+e^{-ix}}{2}$$
but the simplification didn't help at all.
PS: Simplify starting from the left.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...