Sunday, 19 August 2018

trigonometry - A complex number in the power of another complex number




I saw this question, and found a formula:
=cos(dlog|a+bi|+carctandc)+isin(dlog|a+bi|+carctandc).
Which I later translated to Microsoft Math format:
cos(dlog(Abs(a+bi))+carctan(d/c))+sin(dlog(Abs(a+bi))+carctan(d/c))*i
And - that formula gives wrong results.
While the result is -0.507 - 0.861i (for that formula, setting a=1,b=2,c=3,d=4)
Doing (a + bi)^(c + di) gives me 0.129+0.033i
Can anyone explain what I am doing wrong ? (I am trying to write a program which does this.)


Answer



I corrected the answer you cite. Instead of the arctan function it should be the arg function. These two functions are not always equal. The arg function is used in the principal logarithm of z=x+iy, which is the complex number



w=Log z=log|z|+iargz



so that ew=z, where argz (the principal argument of z) is the real number in π<argzπ, with x=|z|cos(argz) and y=|z|sin(argz).




The formula now reads as follows:



(a+bi)c+di=e(c+di) Log (a+bi)=e(c+di)(ln|a+bi|+iarg(a+bi))=ecln|a+ib|darg(a+ib)+i(carg(a+ib)+dln|a+ib|)=ecln|a+ib|darg(a+bi)××(cos(carg(a+ib)+dln|a+ib|)+isin(carg(a+ib)+dln|a+ib|)).



For a=1,b=2,c=3,d=4, we have (numeric computations in SWP)



(1+2i)3+4i=e(3+4i) Log (1+2i)=e(3+4i)(log|1+2i|+iarg(1+2i))=e3ln|1+2i|4arg(1+2i)+i(3arg(1+2i)+4ln|1+2i|)=e3ln|1+2i|4arg(1+2i)××(cos(3arg(1+2i)+4ln|1+2i|)+isin(3arg(1+2i)+4ln|1+2i|))0.13340(cos(6.5403)+isin(6.5403))0.12901+3.3924×102i,




which agrees with the computation in Wolfram Alpha for (1+2i)3+4i.



And for instance, if a=1,b=2,c=3,d=4, then



(1+2i)3+4i=e(3+4i) Log (1+2i)=e(3+4i)(log|1+2i|+iarg(1+2i))=e3ln|1+2i|4arg(1+2i)+i(3arg(1+2i)+4ln|1+2i|)=e3ln|1+2i|4arg(1+2i)××(cos(3arg(1+2i)+4ln|1+2i|)+isin(3arg(1+2i)+4ln|1+2i|))3.2679×103(cos(9.3222)+isin(9.3222))3.2507×103+3.346×104i.



In Wolfram Alpha we get (1+2i)3+4i0.003250688+0.000334598i


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...