Having
lim
The interesting part however is \frac{\cos(x) - 1}{\sin^2x} and \lim_{x \to 0} \frac{(\cos(x) - 1)}{\sin^2x} = \left[\frac{0}{0}\right] = -1. With l'hopital's rule it's easy to solve - I'm interested in other methods though1. Hints are welcome too.
Attempt 1
Considering 1 = \sin^2x + \cos^2x Plugging in:
\frac{\cos(x) - \sin^2x - \cos^2x}{\sin^2x} \longrightarrow \lim_{x \to 0} {\cot(x)\csc(x) - 1 - \cot^2x}
which doesn't go very far.
Attempt 2
Considering:
-2 \leq \cos(x) - 1 \leq 0 \rightarrow \frac{-2}{\sin^2x} \leq \cos(x) - 1 \leq \frac{0}{\sin^2x}
But \lim_{x\to0}{ \frac{-2}{\sin^2x} } \neq \lim_{x\to0}{ \frac{0}{\sin^2x}}
so the squeeze theorem cannot be applied. (bonus question: can it?)
Please avoid Taylor expansion.
Answer
{\cos x-1\over\sin^2x}={\cos x-1\over\sin^2x}\cdot{\cos x+1\over\cos x+1}={\cos^2x-1\over\sin^2x(\cos x+1)}={-\sin^2x\over\sin^2x(\cos x+1)}={-1\over\cos x+1}
No comments:
Post a Comment