I just got the "New and Revised" edition of "Mathematics: The New Golden Age", by Keith Devlin. On p. 64 it says the sum is $\pi^2/6$, but that's way off. $\pi^2/6 \approx 1.64493406685$ whereas the sum in question is $\approx 1.29128599706$. I'm expecting the sum to be something interesting, but I've forgotten how to do these things.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment