Thursday, 19 December 2013

calculus - Limit of nleft(eleft(1+frac1nright)nright)



I want to find the value of lim



I have already tried using L'Hôpital's rule, only to find a seemingly more daunting limit.


Answer



Let P_n = (1+1/n)^n. Then



\log{P_n} = n \log{\left ( 1+\frac1{n} \right )} = n \left (\frac1{n} - \frac1{2 n^2} + \cdots \right) = 1-\frac1{2 n} + \cdots




P_n = e^{1-1/(2 n)+\cdots} = e \left (1-\frac1{2 n} + \cdots \right )



Thus



\lim_{n \to \infty} n (e-P_n) = \frac{e}{2}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...