Thursday, 19 December 2013

calculus - Limit of $nleft(e-left(1+frac{1}{n}right)^nright)$



I want to find the value of $$\lim\limits_{n \to \infty}n\left(e-\left(1+\frac{1}{n}\right)^n\right)$$



I have already tried using L'Hôpital's rule, only to find a seemingly more daunting limit.


Answer



Let $P_n = (1+1/n)^n$. Then



$$\log{P_n} = n \log{\left ( 1+\frac1{n} \right )} = n \left (\frac1{n} - \frac1{2 n^2} + \cdots \right) = 1-\frac1{2 n} + \cdots$$




$$P_n = e^{1-1/(2 n)+\cdots} = e \left (1-\frac1{2 n} + \cdots \right ) $$



Thus



$$\lim_{n \to \infty} n (e-P_n) = \frac{e}{2} $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...