Monday, 16 December 2013

trigonometry - Find domain of function $logleft(cosleft(log xright)right)$




Find domain of function $f(x)=\log\left(\cos\left(\log x\right)\right)$




At the beginning $x>0$
but I have no idea how to handle logarithm
$\cos\left(\log x\right)>0\\\log x>\arccos 0=\frac{\pi}{2}\\\log x>\log 10^{\frac{\pi}{2}}\Rightarrow x>10^{\frac{\pi}{2}}$
I think I'm doing something wrong



Answer



We need




  • $x>0$


  • $\cos(\log x)>0$




$$\implies 0\le \log x < \frac \pi 2 \cup -\frac \pi 2 +2n\pi < \log x <\frac \pi 2 +2n\pi$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...