Sunday, 15 December 2013

calculus - $lim_{n rightarrow infty} sqrt{n+1}(sqrt{n^3 + n} - sqrt{n^3 + 1})$



I wish to compute the following limit




$$\lim_{n \rightarrow \infty} \sqrt{n+1}(\sqrt{n^3 + n} - \sqrt{n^3 + 1})$$



Wolfram Alpha gives the answer as $1/2$. I've tried L'Hopital's rule, but I can't seem to get it to work.


Answer



Try



$$\lim_{n \rightarrow \infty} \sqrt{n+1}(\sqrt{n^3 + n} - \sqrt{n^3 + 1})= \lim_{n \rightarrow \infty} \sqrt{n+1}\frac{n-1}{\sqrt{n^3 + n} + \sqrt{n^3 + 1}}=\lim_{n \rightarrow \infty} \sqrt{1+1/n}\frac{1-1/n}{\sqrt{1 + 1/n^2} + \sqrt{1 + 1/n^3}}=1/2$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...