Wednesday, 8 October 2014

abstract algebra - Proving the remainder when a polynomial is divided by an integer.



How should I go around proving that xZ, the remainder when x2+2x is divided by 3 is 0 or 2?



Do I use the division algorithm for this one?


Answer




As one can show, the remainder of a sum equals the sum of the remainders*
(a+b) rem m=((a rem m)+(b rem m)) rem m.


And the remainder of a product equals the product of the remainders*
(ab) rem m=((a rem m)(b rem m)) rem m.

(*provided you take the reminder once again to avoid exceeding the divisor.)



Then (x2+2x) rem 3=(x2 rem 3+2x rem 3) rem 3=((x rem 3)2+2(x rem 3)) rem 3.


As x rem 3 can take only the values 0,1,2, it suffices to evaluate for these.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...