Wednesday, 15 October 2014

linear algebra - a question how to compute the eigenvalues of a matrix

I have a question:
Suppose I have a $n\times n$ matrix:
$$
\begin{bmatrix}
1 & 1 &...& 1 \\
1 & 1 &...&1 \\
\vdots&\vdots &\ddots & \vdots&\\
1 & 1 & ...&1 \\

\end{bmatrix}
$$
,then is there a easy way to compute the eigenvalues of the matrix?



How can I compute this matrix eigenvalue?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...