The series is $\sum_{n=1}^{\infty} r(n)x^n$ , where $r(n)$ is defined as the divisor function. The question is , what is the radius of convergence of the power series?
Maybe it is not that interesting , but I am stuck with this one since we haven't had this function in our entire lecture and it came up in the latest worksheet.
Thursday, 16 October 2014
convergence divergence - Interesting Power Series
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment