Monday, 27 October 2014

calculus - Evaluate $int frac{1}{sin xcos x} dx $



Question: How to evaluate $\displaystyle \int \frac{1}{\sin x\cos x} dx $



I know that the correct answer can be obtained by doing:
$\displaystyle\frac{1}{\sin x\cos x} = \frac{\sin^2(x)}{\sin x\cos x}+\frac{\cos^2(x)}{\sin x\cos x} = \tan(x) + \cot(x)$ and integrating.




However, doing the following gets a completely different answer:
\begin{eqnarray*}
\int \frac{1}{\sin x\cos x} dx
&=&\int \frac{\sin x}{\sin^2(x)\cos x} dx\\
&=&\int \frac{\sin x}{(1-\cos^2(x))\cos x} dx.
\end{eqnarray*}
let $u=\cos x, du=-\sin x dx$; then
\begin{eqnarray*}
\int \frac{1}{\sin x\cos x} dx
&=&\int \frac{-1}{(1-u^2)u} du\\
&=&\int \frac{-1}{(1+u)(1-u)u}du\\
&=&\int \left(\frac{-1}{u} - \frac{1}{2(1-u)} + \frac{1}{2(1+u)}\right) du\\
&=&-\ln|\cos x|+\frac{1}{2}\ln|1-\cos x|+\frac{1}{2}\ln|1+\cos x|+C

\end{eqnarray*}



I tested both results in Mathematica, and the first method gets the correct answer, but the second method doesn't. Is there any reason why this second method doesn't work?


Answer



If I take the derivative of your second answer (call it $g(x)$), I get:
\begin{eqnarray*}
\frac{dg}{dx}
& = & -\frac{-\sin x}{\cos x} + \frac{\sin x}{2(1-\cos x)} + \frac{-\sin x}{2(1+\cos x)}\\
& = & \frac{\sin x\left(1-\cos^2 x + \frac{1}{2}\cos x(1+\cos x) - \frac{1}{2}\cos x(1-\cos x)\right)}{\cos x(1-\cos x)(1+\cos x)}\\
& = & \frac{\sin x\left( 1- \cos^2 x + \frac{1}{2}\cos x + \frac{1}{2}\cos^2 x - \frac{1}{2}\cos x + \frac{1}{2}\cos^2 x\right)}{\cos x(1-\cos^2 x)}\\

& = & \frac{\sin x}{\cos x\>\sin^2 x} = \frac{1}{\cos x\sin x}.
\end{eqnarray*}
So I'm not sure why Mathematica says the second method is not "the right answer".


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...