Wednesday, 8 October 2014

elementary number theory - Get the last two digits of 16100 and 17100



I try to get the last two digits of 16100 and 17100



I started with:



61=6



62=36




63=216 means last digit for 6 is always 6



That is why the last digit for 16100 is 6



And for 17100 i calculated:



71=7



72=49




73=343



74=2401



75=16807



And because 425=100 or better said 100mod4=0



The last digit for 17100 is 1




But how do i get the penultimate digits? Thanks


Answer



As (17,100)=1, and using Carmichael function λ(100)=20



\displaystyle\implies17^{20}\equiv1\pmod{100}






16^{100}=(2^4)^{100}=2^{400}




As (2^{400},100)=4=2^2\ne1 let us find 2^{400-2}\pmod{25}



As \displaystyle\lambda(25)=\phi(25)=20, 2^{20}\equiv1\pmod{25}



and \displaystyle400-2\equiv18\pmod{20}\implies 2^{400-2}\equiv2^{18}\pmod{25}



Now, \displaystyle2^9=512\equiv12\pmod{25}\implies 2^{18}=(2^9)^2\equiv12^2=144\equiv19\pmod{25}



\displaystyle\implies 2^{400-2}\equiv19\pmod{25}\ \ \ \ (1)




Now as \displaystyle a\equiv b\pmod m\implies a\cdot n\equiv b\cdot n\pmod{m\cdot n} for any integer n,



multiply either sides of (1) by 4


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...