Wednesday, 8 October 2014

elementary number theory - Get the last two digits of $16^{100}$ and $17^{100}$



I try to get the last two digits of $16^{100}$ and $17^{100}$



I started with:



$6^{1} = 6$



$6^{2} = 36$




$6^{3} = 216$ means last digit for $6$ is always $6$



That is why the last digit for $16^{100}$ is $6$



And for $17^{100}$ i calculated:



$7^{1} = 7$



$7^{2} = 49$




$7^{3} = 343$



$7^{4} = 2401$



$7^{5} = 16807$



And because $4*25 = 100$ or better said $100mod4 = 0$



The last digit for $17^{100}$ is $1$




But how do i get the penultimate digits? Thanks


Answer



As $(17,100)=1,$ and using Carmichael function $\displaystyle\lambda(100)=20$



$\displaystyle\implies17^{20}\equiv1\pmod{100}$






$16^{100}=(2^4)^{100}=2^{400}$




As $(2^{400},100)=4=2^2\ne1$ let us find $2^{400-2}\pmod{25}$



As $\displaystyle\lambda(25)=\phi(25)=20, 2^{20}\equiv1\pmod{25}$



and $\displaystyle400-2\equiv18\pmod{20}\implies 2^{400-2}\equiv2^{18}\pmod{25}$



Now, $\displaystyle2^9=512\equiv12\pmod{25}\implies 2^{18}=(2^9)^2\equiv12^2=144\equiv19\pmod{25}$



$\displaystyle\implies 2^{400-2}\equiv19\pmod{25}\ \ \ \ (1)$




Now as $\displaystyle a\equiv b\pmod m\implies a\cdot n\equiv b\cdot n\pmod{m\cdot n}$ for any integer $n,$



multiply either sides of $(1)$ by $4$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...