I try to get the last two digits of 16100 and 17100
I started with:
61=6
62=36
63=216 means last digit for 6 is always 6
That is why the last digit for 16100 is 6
And for 17100 i calculated:
71=7
72=49
73=343
74=2401
75=16807
And because 4∗25=100 or better said 100mod4=0
The last digit for 17100 is 1
But how do i get the penultimate digits? Thanks
Answer
As (17,100)=1, and using Carmichael function λ(100)=20
\displaystyle\implies17^{20}\equiv1\pmod{100}
16^{100}=(2^4)^{100}=2^{400}
As (2^{400},100)=4=2^2\ne1 let us find 2^{400-2}\pmod{25}
As \displaystyle\lambda(25)=\phi(25)=20, 2^{20}\equiv1\pmod{25}
and \displaystyle400-2\equiv18\pmod{20}\implies 2^{400-2}\equiv2^{18}\pmod{25}
Now, \displaystyle2^9=512\equiv12\pmod{25}\implies 2^{18}=(2^9)^2\equiv12^2=144\equiv19\pmod{25}
\displaystyle\implies 2^{400-2}\equiv19\pmod{25}\ \ \ \ (1)
Now as \displaystyle a\equiv b\pmod m\implies a\cdot n\equiv b\cdot n\pmod{m\cdot n} for any integer n,
multiply either sides of (1) by 4
No comments:
Post a Comment