Saturday, 27 February 2016

Bijection between finite and infinite sequences over Reals.

So define the set of finite sequences to be S=a1,a2, where ak are in real numbers and only finitely many of them are non-zero. The set of infinite sequences is defined similarly except that we can have infinitely many non-zero terms. How do I prove that there does not exist a bijection between these two sets?

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...