I would like to solve that limit solved using only rules of algebra of limits.
$$\lim_{x\to0}\frac{e^x-1-x}{x^2}$$
All the answers in How to find $\lim\limits_{x\to0}\frac{e^x-1-x}{x^2}$ without using l'Hopital's rule nor any series expansion? do not fully address my question.
A challenging limit problem for the level of student who knows that:
$$\begin{align*}
\lim\limits_{x\to +\infty} e^x&=+\infty\tag1\\
\lim\limits_{x\to -\infty} e^x&=0\tag2\\
\lim\limits_{x\to +\infty} \frac{e^x}{x^n}&=+\infty\tag3\\
\lim\limits_{x\to -\infty} x^ne^x&=0\tag4\\
\lim\limits_{x\to 0} \frac{e^x-1}{x}&=1\tag5
\end{align*}$$
No comments:
Post a Comment