I'm trying to prove the following identity (of which I numerically verified the truth) :
$$\text{For every $n\in\mathbb{N}^*$ and $\alpha \in \mathbb{R}\setminus\lbrace-2k\text{ }|\text{ }k\in\mathbb{N}\rbrace$,}$$
$$\text{$\prod\limits_{k=1}^{n}$}\left[1-\frac{1}{2k+\alpha}\right]=\frac{\alpha}{4^{n}}{2n \choose n}\text{$\sum\limits_{k=0}^{n}$}\frac{{n \choose k}^2}{{2n \choose 2k}}\frac{1}{2k+\alpha}$$
I've tried induction, unsuccessfully. Tbh, I don't really have any other ideas for tackling it. Products such as this are not that easy to work with.
Any ideas or suggestion ?
Answer
For the identity
$$\bbox[5px,border:2px solid #00A000]{
\prod_{k=1}^n \left[ 1 - \frac{1}{2k+\alpha} \right]
= \frac{\alpha}{4^n} {2n\choose n}
\sum_{k=0}^n {n\choose k}^2 {2n\choose 2k}^{-1}
\frac{1}{2k+\alpha}}$$
we work with $n\ge 2$ and we first simplify the RHS
$$\frac{\alpha}{4^n} \frac{(2n)!}{n!\times n!}
\sum_{k=0}^n \frac{n!^2}{k!^2 (n-k)!^2} \frac{(2k)! (2n-2k)!}{(2n)!}
\frac{1}{2k+\alpha}
\\ = \frac{\alpha}{4^n}
\sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k}
\frac{1}{2k+\alpha}
\\ = \frac{1}{4^n} {2n\choose n} + \frac{\alpha}{4^n}
\sum_{k=1}^n {2k\choose k} {2n-2k\choose n-k}
\frac{1}{2k+\alpha}
.$$
Now for the LHS we find
$$\prod_{k=1}^n \frac{2k-1+\alpha}{2k+\alpha}
= \prod_{k=1}^n (2k-1+\alpha)
\prod_{k=1}^n \frac{1}{2k+\alpha}
\\ = (1+\alpha) \prod_{k=2}^n (2k-1+\alpha)
\prod_{k=1}^n \frac{1}{2k+\alpha}.$$
We may apply partial fractions by residues to the two products (degree
of numerator is less than degree of denominator and poles are all
simple) for the variable $\alpha$ and get
$$(1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha}
\mathrm{Res}_{\alpha=-2k}
\prod_{q=2}^n (2q-1+\alpha)
\prod_{q=1}^n \frac{1}{2q+\alpha}
\\ = (1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha}
\prod_{q=2}^n (2q-1-2k)
\prod_{q=1}^{k-1} \frac{1}{2q-2k}
\prod_{q=k+1}^{n} \frac{1}{2q-2k}
\\ = \frac{1}{2^{n-1}}
(1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha}
\prod_{q=2}^n (2q-1-2k)
\prod_{q=1}^{k-1} \frac{1}{q-k}
\prod_{q=k+1}^{n} \frac{1}{q-k}
\\ = \frac{1}{2^{n-1}}
(1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha}
\frac{(-1)^{k-1}}{(k-1)!} \frac{1}{(n-k)!} \prod_{q=2}^n (2q-1-2k).$$
For the remaining product we get
$$\prod_{q=2}^n (2q-1-2k)
= \prod_{q=2}^k (2q-1-2k) \prod_{q=k+1}^n (2q-1-2k)
\\ = \frac{(-1)^{k-1} (2k-2)!}{(k-1)! \times 2^{k-1}}
\prod_{q=1}^{n-k} (2q-1)
\\ = \frac{(-1)^{k-1} (2k-2)!}{(k-1)! \times 2^{k-1}}
\frac{(2n-2k)!}{(n-k)! \times 2^{n-k}}.$$
Collecting everything we have for the partial fraction decomposition
$$\frac{1}{2^{n-1}}
(1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha}
\frac{(-1)^{k-1}}{(k-1)!} \frac{1}{(n-k)!}
\frac{(-1)^{k-1} (2k-2)!}{(k-1)! \times 2^{k-1}}
\frac{(2n-2k)!}{(n-k)! \times 2^{n-k}}$$
which is
$$\bbox[5px,border:2px solid #00A000]{
\frac{1}{4^{n-1}}
(1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha}
{2k-2\choose k-1} {2n-2k\choose n-k}.}$$
Next to conclude we extract the coefficient on $[\alpha^q]$ and show
that the RHS and the LHS yield the same, proving the claim (no pole at
$\alpha=0$). We get for $q=0$ that we must have
$$\frac{1}{4^n} {2n\choose n} =
\frac{1}{4^{n-1}}
\sum_{k=1}^n \frac{1}{2k}
{2k-2\choose k-1} {2n-2k\choose n-k}
\\ = \frac{1}{2^{2n-1}}
\sum_{k=0}^{n-1} \frac{1}{k+1}
{2k\choose k} {2n-2-2k\choose n-1-k}.$$
We recognize Catalan numbers with OGF
$$C(z) = \frac{1-\sqrt{1-4z}}{2z}.$$
Continuing,
$$\frac{1}{2^{2n-1}}
\sum_{k=0}^{n-1} \frac{1}{k+1}
{2k\choose k} [z^{n-1-k}] (1+z)^{2n-2-2k}
\\ = \frac{1}{2^{2n-1}} [z^{n-1}]
\sum_{k=0}^{n-1} \frac{1}{k+1}
{2k\choose k} z^k (1+z)^{2n-2-2k}.$$
Now when $k\gt n-1$ there is no contribution to the coefficient
extractor and we continue with
$$\frac{1}{2^{2n-1}} [z^{n-1}] (1+z)^{2n-2}
\sum_{k\ge 0} \frac{1}{k+1}
{2k\choose k} z^k (1+z)^{-2k}
\\ = \frac{1}{2^{2n-1}} [z^{n-1}] (1+z)^{2n-2}
\frac{1-\sqrt{1-4z/(1+z)^2}}{2z/(1+z)^2}
\\ = \frac{1}{2^{2n}} [z^{n}] (1+z)^{2n-2}
\frac{1-\sqrt{1-4z/(1+z)^2}}{1/(1+z)^2}
\\ = \frac{1}{2^{2n}} [z^{n}] (1+z)^{2n-1}
(1+z-\sqrt{1-2z+z^2})
\\ = \frac{1}{2^{2n}} [z^{n}] (1+z)^{2n-1} 2z
= \frac{1}{2^{2n}} [z^{n-1}] 2 (1+z)^{2n-1}
= \frac{1}{2^{2n}} 2 {2n-1\choose n-1}
\\ = \frac{1}{2^{2n}} {2n\choose n}.$$
We have equality for $q=0.$ For $q\ge 1$ we must have that
$$\frac{1}{4^n}
\sum_{k=1}^n {2k\choose k} {2n-2k\choose n-k}
[\alpha^{q-1}] \frac{1}{2k} \frac{1}{1+\alpha/2/k}
\\ = \frac{1}{4^n}
\sum_{k=1}^n {2k\choose k} {2n-2k\choose n-k}
(-1)^{q-1} \frac{1}{2^qk^q}$$
is the same as
$$\frac{1}{4^{n-1}}
\sum_{k=1}^n ([\alpha^q] + [\alpha^{q-1}]) \frac{1}{2k+\alpha}
{2k-2\choose k-1} {2n-2k\choose n-k}.$$
This is
$$\frac{1}{4^{n-1}}
\sum_{k=1}^n
\left((-1)^q \frac{1}{2^{q+1} k^{q+1}} +
(-1)^{q-1}\frac{1}{2^qk^q}\right)
{2k-2\choose k-1} {2n-2k\choose n-k}
\\ = \frac{1}{4^{n-1}}
\sum_{k=1}^n
\left(-\frac{1}{2k} + 1\right)
(-1)^{q-1}\frac{1}{2^qk^q}
{2k-2\choose k-1} {2n-2k\choose n-k}
\\ = \frac{1}{2^{2n-2}}
\sum_{k=1}^n
\frac{2k-1}{2k}
(-1)^{q-1}\frac{1}{2^qk^q} \frac{k}{2k-1}
{2k-1\choose k} {2n-2k\choose n-k}
\\ = \frac{1}{2^{2n-1}}
\sum_{k=1}^n
(-1)^{q-1}\frac{1}{2^qk^q}
{2k-1\choose k-1} {2n-2k\choose n-k}
\\ = \frac{1}{2^{2n-1}}
\sum_{k=1}^n
(-1)^{q-1}\frac{1}{2^qk^q} \frac{k}{2k}
{2k\choose k} {2n-2k\choose n-k}
\\ = \frac{1}{4^n}
\sum_{k=1}^n
(-1)^{q-1}\frac{1}{2^qk^q}
{2k\choose k} {2n-2k\choose n-k}.$$
We again have equality. This concludes the proof.
No comments:
Post a Comment