Saturday, 13 February 2016

calculus - An equality between a product and a combinatorial sum




I'm trying to prove the following identity (of which I numerically verified the truth) :



For every nN and αR{2k | kN},



\text{$\prod\limits_{k=1}^{n}$}\left[1-\frac{1}{2k+\alpha}\right]=\frac{\alpha}{4^{n}}{2n \choose n}\text{$\sum\limits_{k=0}^{n}$}\frac{{n \choose k}^2}{{2n \choose 2k}}\frac{1}{2k+\alpha}



I've tried induction, unsuccessfully. Tbh, I don't really have any other ideas for tackling it. Products such as this are not that easy to work with.



Any ideas or suggestion ?



Answer



For the identity



\bbox[5px,border:2px solid #00A000]{ \prod_{k=1}^n \left[ 1 - \frac{1}{2k+\alpha} \right] = \frac{\alpha}{4^n} {2n\choose n} \sum_{k=0}^n {n\choose k}^2 {2n\choose 2k}^{-1} \frac{1}{2k+\alpha}}



we work with n\ge 2 and we first simplify the RHS




\frac{\alpha}{4^n} \frac{(2n)!}{n!\times n!} \sum_{k=0}^n \frac{n!^2}{k!^2 (n-k)!^2} \frac{(2k)! (2n-2k)!}{(2n)!} \frac{1}{2k+\alpha} \\ = \frac{\alpha}{4^n} \sum_{k=0}^n {2k\choose k} {2n-2k\choose n-k} \frac{1}{2k+\alpha} \\ = \frac{1}{4^n} {2n\choose n} + \frac{\alpha}{4^n} \sum_{k=1}^n {2k\choose k} {2n-2k\choose n-k} \frac{1}{2k+\alpha} .



Now for the LHS we find



\prod_{k=1}^n \frac{2k-1+\alpha}{2k+\alpha} = \prod_{k=1}^n (2k-1+\alpha) \prod_{k=1}^n \frac{1}{2k+\alpha} \\ = (1+\alpha) \prod_{k=2}^n (2k-1+\alpha) \prod_{k=1}^n \frac{1}{2k+\alpha}.




We may apply partial fractions by residues to the two products (degree
of numerator is less than degree of denominator and poles are all
simple) for the variable \alpha and get



(1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha} \mathrm{Res}_{\alpha=-2k} \prod_{q=2}^n (2q-1+\alpha) \prod_{q=1}^n \frac{1}{2q+\alpha} \\ = (1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha} \prod_{q=2}^n (2q-1-2k) \prod_{q=1}^{k-1} \frac{1}{2q-2k} \prod_{q=k+1}^{n} \frac{1}{2q-2k} \\ = \frac{1}{2^{n-1}} (1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha} \prod_{q=2}^n (2q-1-2k) \prod_{q=1}^{k-1} \frac{1}{q-k} \prod_{q=k+1}^{n} \frac{1}{q-k} \\ = \frac{1}{2^{n-1}} (1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha} \frac{(-1)^{k-1}}{(k-1)!} \frac{1}{(n-k)!} \prod_{q=2}^n (2q-1-2k).




For the remaining product we get



\prod_{q=2}^n (2q-1-2k) = \prod_{q=2}^k (2q-1-2k) \prod_{q=k+1}^n (2q-1-2k) \\ = \frac{(-1)^{k-1} (2k-2)!}{(k-1)! \times 2^{k-1}} \prod_{q=1}^{n-k} (2q-1) \\ = \frac{(-1)^{k-1} (2k-2)!}{(k-1)! \times 2^{k-1}} \frac{(2n-2k)!}{(n-k)! \times 2^{n-k}}.




Collecting everything we have for the partial fraction decomposition



\frac{1}{2^{n-1}} (1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha} \frac{(-1)^{k-1}}{(k-1)!} \frac{1}{(n-k)!} \frac{(-1)^{k-1} (2k-2)!}{(k-1)! \times 2^{k-1}} \frac{(2n-2k)!}{(n-k)! \times 2^{n-k}}



which is




\bbox[5px,border:2px solid #00A000]{ \frac{1}{4^{n-1}} (1+\alpha) \sum_{k=1}^n \frac{1}{2k+\alpha} {2k-2\choose k-1} {2n-2k\choose n-k}.}



Next to conclude we extract the coefficient on [\alpha^q] and show
that the RHS and the LHS yield the same, proving the claim (no pole at
\alpha=0). We get for q=0 that we must have



\frac{1}{4^n} {2n\choose n} = \frac{1}{4^{n-1}} \sum_{k=1}^n \frac{1}{2k} {2k-2\choose k-1} {2n-2k\choose n-k} \\ = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} \frac{1}{k+1} {2k\choose k} {2n-2-2k\choose n-1-k}.



We recognize Catalan numbers with OGF



C(z) = \frac{1-\sqrt{1-4z}}{2z}.




Continuing,



\frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} \frac{1}{k+1} {2k\choose k} [z^{n-1-k}] (1+z)^{2n-2-2k} \\ = \frac{1}{2^{2n-1}} [z^{n-1}] \sum_{k=0}^{n-1} \frac{1}{k+1} {2k\choose k} z^k (1+z)^{2n-2-2k}.




Now when k\gt n-1 there is no contribution to the coefficient
extractor and we continue with



\frac{1}{2^{2n-1}} [z^{n-1}] (1+z)^{2n-2} \sum_{k\ge 0} \frac{1}{k+1} {2k\choose k} z^k (1+z)^{-2k} \\ = \frac{1}{2^{2n-1}} [z^{n-1}] (1+z)^{2n-2} \frac{1-\sqrt{1-4z/(1+z)^2}}{2z/(1+z)^2} \\ = \frac{1}{2^{2n}} [z^{n}] (1+z)^{2n-2} \frac{1-\sqrt{1-4z/(1+z)^2}}{1/(1+z)^2} \\ = \frac{1}{2^{2n}} [z^{n}] (1+z)^{2n-1} (1+z-\sqrt{1-2z+z^2}) \\ = \frac{1}{2^{2n}} [z^{n}] (1+z)^{2n-1} 2z = \frac{1}{2^{2n}} [z^{n-1}] 2 (1+z)^{2n-1} = \frac{1}{2^{2n}} 2 {2n-1\choose n-1} \\ = \frac{1}{2^{2n}} {2n\choose n}.



We have equality for q=0. For q\ge 1 we must have that



\frac{1}{4^n} \sum_{k=1}^n {2k\choose k} {2n-2k\choose n-k} [\alpha^{q-1}] \frac{1}{2k} \frac{1}{1+\alpha/2/k} \\ = \frac{1}{4^n} \sum_{k=1}^n {2k\choose k} {2n-2k\choose n-k} (-1)^{q-1} \frac{1}{2^qk^q}



is the same as



\frac{1}{4^{n-1}} \sum_{k=1}^n ([\alpha^q] + [\alpha^{q-1}]) \frac{1}{2k+\alpha} {2k-2\choose k-1} {2n-2k\choose n-k}.



This is



\frac{1}{4^{n-1}} \sum_{k=1}^n \left((-1)^q \frac{1}{2^{q+1} k^{q+1}} + (-1)^{q-1}\frac{1}{2^qk^q}\right) {2k-2\choose k-1} {2n-2k\choose n-k} \\ = \frac{1}{4^{n-1}} \sum_{k=1}^n \left(-\frac{1}{2k} + 1\right) (-1)^{q-1}\frac{1}{2^qk^q} {2k-2\choose k-1} {2n-2k\choose n-k} \\ = \frac{1}{2^{2n-2}} \sum_{k=1}^n \frac{2k-1}{2k} (-1)^{q-1}\frac{1}{2^qk^q} \frac{k}{2k-1} {2k-1\choose k} {2n-2k\choose n-k} \\ = \frac{1}{2^{2n-1}} \sum_{k=1}^n (-1)^{q-1}\frac{1}{2^qk^q} {2k-1\choose k-1} {2n-2k\choose n-k} \\ = \frac{1}{2^{2n-1}} \sum_{k=1}^n (-1)^{q-1}\frac{1}{2^qk^q} \frac{k}{2k} {2k\choose k} {2n-2k\choose n-k} \\ = \frac{1}{4^n} \sum_{k=1}^n (-1)^{q-1}\frac{1}{2^qk^q} {2k\choose k} {2n-2k\choose n-k}.



We again have equality. This concludes the proof.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...