Wednesday, 17 February 2016

calculus - Evaluating $sum _{n=2}^{infty } frac{(-5)^n}{8^{2 n}}$ making use of geometric series





Evaluate
$$\sum _{n=2}^{\infty}\frac{(-5)^n}{8^{2n}}$$
using geometric series.




I thought it would be possible to split this series such that we have



$$\sum _{n=2}^{\infty } (-5)^n \cdot \sum _{n=2}^{\infty } \left(\frac{1}{8}\right)^{2 n}$$




However, I am not sure that this is actually possible and I also see that the first sum does not converge, so even if it was possible I am not able to solve it. Could someone walk me through the steps?


Answer



First note that
$$
\sum\limits_{n=2}^{\infty } \frac{(-5)^n}{8^{2 n}}= \sum\limits_{n=2}^{\infty } \left(-\frac{5}{64}\right)^n
$$



Now let's look at the first two terms of the sum
$$

\left(-\frac{5}{64}\right)^2+ \left(-\frac{5}{64}\right)^3+\dots
$$
$$
=\left(\frac{5}{64}\right)^2- \left(\frac{5}{64}\right)^3+\dots
$$



So now we know that
$$
a= \left(\frac{5}{64}\right)^2=\frac{25}{4096}
$$

And
$$
r= -\frac{5}{64}
$$
Therefore
$$
\sum\limits_{n=2}^{\infty } \left(-\frac{5}{64}\right)^n=\frac{\frac{25}{4096}}{1-\left(-\frac{5}{64}\right)}=\frac{25}{4416}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...