Friday, 12 February 2016

integration - Integral intf0racpi2x2sqrttanx,mathrmdx




Last year I wondered about this integral:π20x2tanxdx
That is because it looks very similar to this integral
and this one. Surprisingly the result is quite nice and an approach can be found here.
π20x2tanxdx=2π(5π2+12πln212ln22)96



Although the approach there is quite skillful, I believed that an elementary approach can be found for this integral.



Here is my idea. First we will consider the following two integrals: I=π20x2tanxdx;J=π20x2cotxdx
I=12((IJ)+(I+J))
Thust we need to evaluate the sum and the difference of those two from above.




I also saw from here that the "sister" integral differs only by a minus sign: π20x2cotxdx=2π(5π212πln212ln22)96
Thus using those two boxed answer we expect to find: IJ=π2ln222;I+J=5π3242πln2222






IJ=π20x2(tanxcotx)dx=2π20x2sinxcosxsin(2x)dx
=2π20x2(arccosh(sinx+cosx))dx=22π20xarccosh(sinx+cosx)dx
Let us also denote the last integral with I1 and do a π2x=x substitution:
I1=π20xarccosh(sinx+cosx)dx=π20(π2x)arccosh(sinx+cosx)dx

2I1=π2π20arccosh(sinx+cosx)dxIJ=π2π20arccosh(sinx+cosx)dx



By using (1) we can easily deduce that: π20arccosh(sinx+cosx)dx=π2ln2






Doing something similar for I+J we get:
I+J=π20x2(tanx+cotx)dx=2π20x2sinx+cosxsin(2x)dx
=2π20x2(arcsin(sinxcosx))dx=π32822π20xarcsin(sinxcosx)dx




Unfortunately, we're not lucky this time and the substitution used for IJ doesn't help in this case.
Of course using (1) we can again deduce that:
π20xarcsin(sinxcosx)dx=π396+π8ln22






In the meantime I found a way for the first one, mainly using: arctanxx=10dy1+x2y2 Let us denote: I1=π20arccosh(sinx+cosx)dxIBP=π20xsinxcosxsin(2x)dx
tanxx=120arctanx1+x2x1xdx=12010dy1+x2y2x(x1)1+x2dx
=1210011+y2x2x(x1)1+x2dxdy
=1210π2(2y211y(y21)yy21)dy=π2ln2




Although the integral in the third row looks quite unpleasant, it can be done quite elementary.






Sadly a similar approach for the second one is madness, because we would have:
I2=10100x(x+1)1+x211+y2x211+z2x2dxdydz



But atleast it gives hope that an elementary approach exists.





For this question I would like to see an elementary approach (without relying on special functions) for the second integral (red one).




If possible please avoid contour integration, although this might be
included in elementary.


Answer



On the path of Zacky, the missing part...



Let,




I=π20x2tanxdxJ=π20x2tanxdx



Perform the change of variable y=tanx,



I=02x2arctan2(x2)1+x4dxJ=02x2arctan2(1x2)1+x4dx




I+J=02x2(arctan(x2)+arctan(1x2))21+x4dx40x2arctan(x2)arctan(1x2)1+x4dx=π2402x21+x4dx40x2arctan(x2)arctan(1x2)1+x4dx



Perform the change of variable y=1x,



K=02x21+x4dx=021+x4dx



Therefore,



2K=02(1+1x2)(x1x)2+2dx



Perform the change of variable y=x1x,




2K=2+12+x2dx=2[12arctan(x2)]+=2×π2



therefore,



I+J=π34240x2arctan(x2)arctan(1x2)1+x4dx



Let a>0,



K1(a)=0x2a+x4dx=1a0x21+(a14x)4dx



Perform the change of variable y=a14x,




K1(a)=a140x21+x4dx=a14π22



In the same manner,



K2(a)=0x21+ax4dx=a34π22



Since, for a real,



arctana=10a1+a2t2dt



then,



L=0x2arctan(x2)arctan(1x2)1+x4dx=0(1010x2(1+u2x4)(1+v2x4)(1+x4)dudv)dx=0(1010(x2(1u2)(1v2)(1+x4)x21u2v2(u2(1u2)(1+u2x4)+v2(1v2)(v2+x4)))dudv)dx=1010(π22(1u2)(1v2)11u2v2(u2K2(u2)1u2+v2K1(v2)1v2))dudv=π221010(1(1u2)(1v2)1(1u2v2)(u121u2+v321v2))dudv=π10[v( arctanh(uv) arctan(uv) arctanh(uv))+arctan(u)+ln(1+u1+u)22(1v2)]u=1u=0dv=π2210v( arctanh(v) arctan(v) arctanh(v))+π412ln21v2dv=π2210varctan(1v1+v)1v2dv+π22(π412ln2)101v1v2dv+π2210vln(1+v2)1v2dvπ4210vln(1+v2)1v2dv



Perform the change of variable y=1v1+v,



R1=10varctan(1v1+v)1v2dv=1210(1v)2arctanvv(1+v2)dv=1210arctanvvdv10arctanv1+v2dv=12G12[arctan2v]10=12Gπ232R2=101v1v2dv=[ln(1+v1+v)+arctan(v)]10=π412ln2



Perform the change of variable y=1v1+v,



R3=10vln(1+v2)1v2dv=1210(1v)2ln(1+v)v(1+v2)dv=10ln(1+v)1+v2dv1210ln(1+v)vdv=10ln(1+v)1+v2dv14102vln(1v2)v2dv+1210ln(1v)vdv



In the second integral perform the change of variable y=v2,



R3=10ln(1+v)1+v2dv+1410ln(1v)vdv



In the second integral perform the change of variable y=1v,




R3=10ln(1+v)1+v2dv+1410lnv1vdv=10ln(1+v)1+v2dv+14×ζ(2)=10ln(1+v)1+v2dvπ224



Perform the change of variable y=1v1+v,



S1=10ln(1+v)1+v2dv=10ln(21+v)1+v2dv=ln21011+v2dvS1=π4ln2S1



Therefore,



S1=π8ln2R3=π8ln2π224




Perform the change of variable y=1v1+v,



R4=10vln(1+v2)1v2dv=1210(1v)2ln(1+v2(1+v)2)v(1+v2)dv=1210(1v)2ln(1+v2)v(1+v2)dv+2R3=1210ln(1+v2)vdv10ln(1+v2)1+v2dv+π4ln2π212=12×14ζ(2)10ln(1+v2)1+v2dv+π4ln2π212=π4ln2π21610ln(1+v2)1+v2dv=π4ln2π2161010v2(1+v2)(1+v2t)dtdv=π4ln2π21610[arctan(v)tarctan(vt)(t1)t]v=1v=0dt=π4ln2π21610πt4arctan(t)(t1)tdt=π4ln2π216+10arctan(1t1+t)(1t)tdtπ410t1(t1)tdt=π4ln2π216+10arctan(1t1+t)(1t)tdtπ4[2ln(1+t)]10=10arctan(1t1+t)(1t)tdtπ4ln2π216



Perform the change of variable y=1t1+t,




R4=10arctanttdtπ4ln2π216=Gπ4ln2π216



Therefore,



L=π22R1+π22(π412ln2)R2+π22R3π42R4=π22(G2π232)+π22(π412ln2)2+π22(π8ln2π224)π42(Gπ4ln2π216)=π3962+πln2282



Thus,
I+J=π3424L=π3424(π3962+πln2282)=5π3242πln2222


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...