Last year I wondered about this integral:∫π20x2√tanxdx
That is because it looks very similar to this integral
and this one. Surprisingly the result is quite nice and an approach can be found here.
∫π20x2√tanxdx=√2π(5π2+12πln2−12ln22)96
Although the approach there is quite skillful, I believed that an elementary approach can be found for this integral.
Here is my idea. First we will consider the following two integrals: I=∫π20x2√tanxdx;J=∫π20x2√cotxdx
⇒I=12((I−J)+(I+J))
Thust we need to evaluate the sum and the difference of those two from above.
I also saw from here that the "sister" integral differs only by a minus sign: ∫π20x2√cotxdx=√2π(5π2−12πln2−12ln22)96
Thus using those two boxed answer we expect to find: I−J=π2ln22√2;I+J=5π324√2−πln222√2
I−J=∫π20x2(√tanx−√cotx)dx=√2∫π20x2⋅sinx−cosx√sin(2x)dx
=−√2∫π20x2(arccosh(sinx+cosx))′dx=2√2∫π20xarccosh(sinx+cosx)dx
Let us also denote the last integral with I1 and do a π2−x=x substitution:
I1=∫π20xarccosh(sinx+cosx)dx=∫π20(π2−x)arccosh(sinx+cosx)dx
2I1=π2∫π20arccosh(sinx+cosx)dx⇒I−J=π√2∫π20arccosh(sinx+cosx)dx
By using (1) we can easily deduce that: ∫π20arccosh(sinx+cosx)dx=π2ln2
Doing something similar for I+J we get:
I+J=∫π20x2(√tanx+√cotx)dx=√2∫π20x2⋅sinx+cosx√sin(2x)dx
=√2∫π20x2(arcsin(sinx−cosx))′dx=π3√28−2√2∫π20xarcsin(sinx−cosx)dx
Unfortunately, we're not lucky this time and the substitution used for I−J doesn't help in this case.
Of course using (1) we can again deduce that:
∫π20xarcsin(sinx−cosx)dx=π396+π8ln22
In the meantime I found a way for the first one, mainly using: arctanxx=∫10dy1+x2y2 Let us denote: I1=∫π20arccosh(sinx+cosx)dxIBP=∫π20x⋅sinx−cosx√sin(2x)dx
tanx→x=1√2∫∞0arctanx1+x2x−1√xdx=1√2∫∞0∫10dy1+x2y2√x(x−1)1+x2dx
=1√2∫10∫∞011+y2x2√x(x−1)1+x2dxdy
=1√2∫10π√2(2y2−1−1√y(y2−1)−√yy2−1)dy=π2ln2
Although the integral in the third row looks quite unpleasant, it can be done quite elementary.
Sadly a similar approach for the second one is madness, because we would have:
I2=∫10∫10∫∞0√x(x+1)1+x211+y2x211+z2x2dxdydz
But atleast it gives hope that an elementary approach exists.
For this question I would like to see an elementary approach (without relying on special functions) for the second integral (red one).
If possible please avoid contour integration, although this might be
included in elementary.
Answer
On the path of Zacky, the missing part...
Let,
I=∫π20x2√tanxdxJ=∫π20x2√tanxdx
Perform the change of variable y=√tanx,
I=∫∞02x2arctan2(x2)1+x4dxJ=∫∞02x2arctan2(1x2)1+x4dx
I+J=∫∞02x2(arctan(x2)+arctan(1x2))21+x4dx−4∫∞0x2arctan(x2)arctan(1x2)1+x4dx=π24∫∞02x21+x4dx−4∫∞0x2arctan(x2)arctan(1x2)1+x4dx
Perform the change of variable y=1x,
K=∫∞02x21+x4dx=∫∞021+x4dx
Therefore,
2K=∫∞02(1+1x2)(x−1x)2+2dx
Perform the change of variable y=x−1x,
2K=2∫+∞−∞12+x2dx=2[1√2arctan(x√2)]+∞−∞=2×π√2
therefore,
I+J=π34√2−4∫∞0x2arctan(x2)arctan(1x2)1+x4dx
Let a>0,
K1(a)=∫∞0x2a+x4dx=1a∫∞0x21+(a−14x)4dx
Perform the change of variable y=a−14x,
K1(a)=a−14∫∞0x21+x4dx=a−14π2√2
In the same manner,
K2(a)=∫∞0x21+ax4dx=a−34π2√2
Since, for a real,
arctana=∫10a1+a2t2dt
then,
L=∫∞0x2arctan(x2)arctan(1x2)1+x4dx=∫∞0(∫10∫10x2(1+u2x4)(1+v2x4)(1+x4)dudv)dx=∫∞0(∫10∫10(x2(1−u2)(1−v2)(1+x4)−x21−u2v2(u2(1−u2)(1+u2x4)+v2(1−v2)(v2+x4)))dudv)dx=∫10∫10(π2√2(1−u2)(1−v2)−11−u2v2(u2K2(u2)1−u2+v2K1(v2)1−v2))dudv=π2√2∫10∫10(1(1−u2)(1−v2)−1(1−u2v2)(u121−u2+v321−v2))dudv=π∫10[√v( arctanh(√uv)− arctan(√uv)− arctanh(uv))+arctan(√u)+ln(√1+u1+√u)2√2(1−v2)]u=1u=0dv=π2√2∫10√v( arctanh(√v)− arctan(√v)− arctanh(v))+π4−12ln21−v2dv=π2√2∫10√varctan(1−√v1+√v)1−v2dv+π2√2(π4−12ln2)∫101−√v1−v2dv+π2√2∫10√vln(1+√v2)1−v2dv−π4√2∫10√vln(1+v2)1−v2dv
Perform the change of variable y=1−√v1+√v,
R1=∫10√varctan(1−√v1+√v)1−v2dv=12∫10(1−v)2arctanvv(1+v2)dv=12∫10arctanvvdv−∫10arctanv1+v2dv=12G−12[arctan2v]10=12G−π232R2=∫101−√v1−v2dv=[ln(√1+v1+√v)+arctan(√v)]10=π4−12ln2
Perform the change of variable y=1−√v1+√v,
R3=∫10√vln(1+√v2)1−v2dv=−12∫10(1−v)2ln(1+v)v(1+v2)dv=∫10ln(1+v)1+v2dv−12∫10ln(1+v)vdv=∫10ln(1+v)1+v2dv−14∫102vln(1−v2)v2dv+12∫10ln(1−v)vdv
In the second integral perform the change of variable y=v2,
R3=∫10ln(1+v)1+v2dv+14∫10ln(1−v)vdv
In the second integral perform the change of variable y=1−v,
R3=∫10ln(1+v)1+v2dv+14∫10lnv1−vdv=∫10ln(1+v)1+v2dv+14×−ζ(2)=∫10ln(1+v)1+v2dv−π224
Perform the change of variable y=1−v1+v,
S1=∫10ln(1+v)1+v2dv=∫10ln(21+v)1+v2dv=ln2∫1011+v2dv−S1=π4ln2−S1
Therefore,
S1=π8ln2R3=π8ln2−π224
Perform the change of variable y=1−√v1+√v,
R4=∫10√vln(1+v2)1−v2dv=12∫10(1−v)2ln(1+v2(1+v)2)v(1+v2)dv=12∫10(1−v)2ln(1+v2)v(1+v2)dv+2R3=12∫10ln(1+v2)vdv−∫10ln(1+v2)1+v2dv+π4ln2−π212=12×14ζ(2)−∫10ln(1+v2)1+v2dv+π4ln2−π212=π4ln2−π216−∫10ln(1+v2)1+v2dv=π4ln2−π216−∫10∫10v2(1+v2)(1+v2t)dtdv=π4ln2−π216−∫10[arctan(v)√t−arctan(v√t)(t−1)√t]v=1v=0dt=π4ln2−π216−∫10π√t4−arctan(√t)(t−1)√tdt=π4ln2−π216+∫10arctan(1−√t1+√t)(1−t)√tdt−π4∫10√t−1(t−1)√tdt=π4ln2−π216+∫10arctan(1−√t1+√t)(1−t)√tdt−π4[2ln(1+√t)]10=∫10arctan(1−√t1+√t)(1−t)√tdt−π4ln2−π216
Perform the change of variable y=1−√t1+√t,
R4=∫10arctanttdt−π4ln2−π216=G−π4ln2−π216
Therefore,
L=π2√2R1+π2√2(π4−12ln2)R2+π2√2R3−π4√2R4=π2√2(G2−π232)+π2√2(π4−12ln2)2+π2√2(π8ln2−π224)−π4√2(G−π4ln2−π216)=π396√2+πln228√2
Thus,
I+J=π34√2−4L=π34√2−4(π396√2+πln228√2)=5π324√2−πln222√2
No comments:
Post a Comment