Wednesday, 9 January 2013

algebra precalculus - Find the sum of the series $sum^{infty}_{n=1} frac{1}{(n+1)(n+2)(n+3) cdots (n+k)}$

Find the sum of the series



$$\sum^{\infty}_{n=1} \frac{1}{(n+1)(n+2)(n+3) \cdots (n+k)}$$



Given series




$$\sum^{\infty}_{n=1} \frac{1}{(n+1)(n+2)(n+3) \cdots (n+k)}$$



$$ = \frac{1}{2\cdot3\cdot4 \cdots (k+1)}+\frac{1}{3\cdot4\cdot5 \cdots (k+2)}+\frac{1}{4\cdot5\cdot6\cdots (k+3)} +\cdots$$



now how to proceed further in this pleas suggest thanks ....

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...