Sunday, 6 January 2013

limits - Use of L'hopital's rule



Define $f:\mathbb{N} \to \mathbb{R}$ by $f(n)=\frac{sin (\frac{n\pi}{4})}{n}.$



May I know if we can use L'hopital's rule to evaluate $\lim_{n \to 0} f(n)$ ? If not, how can we evaluate the limit without the use of series?



Thank you.


Answer



There is no such ting as $\lim_{n\to0}f(n)$ if $f$ is only defined on $\mathbb N$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...