Thursday, 10 January 2013

Do the following series converge or diverge? Justify. $sum_{k=0}^{infty} frac{3k^2 + 1}{k^3 + k^2 + 5}$



$$\sum_{k=0}^{\infty} \frac{3k^2 + 1}{k^3 + k^2 + 5}$$



Can I do this using direct comparison test?



for $k \in [1, \infty), a_k = \frac{3k^2 + 1}{k^3 + k^2 + 5} \geq 0$




for $k \in [1,\infty), a_k = \frac{3k^2 + 1}{k^3 + k^2 + 5} \geq \frac{3k^2}{k^3 + k^3 + 5k^3} = \frac{3}{7k} = b_k$



Consider $\frac{3}{7}\sum_{n=1}^{\infty} \frac{1}{k}$. This is a p-series with $p = 1$. By the p-series test $\sum b_k$ diverges, therefore by the comparison test $\sum a_k$ diverges too.



My textbook does this using limit comparison test wondering if I can do it using direct comparison test too. Is this right?


Answer



It's much quicker with equivalents:
$$\frac{3k^2+1}{k^3+k^2+5}\sim_\infty\frac{3k^2}{k^3}=\frac3k,\quad\text{which diverges}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...