Sunday, 6 January 2013

calculus - Prove the existence of a limit : limlimitsxrightarrow+inftyint+inftyvarepsilonxF(xt)costdt=0

Let F(x),G(x) be nonnegative decreasing functions in [0,+), withlimx+x(F(x)+G(x))=0



(1) Prove that: ε>0,we have limx++εxF(xt)costdt=0
(2) If we have limn++0(F(t)G(t))costndt=0


then prove that
limx0+0(F(t)G(t))cos(xt)dt=0



I tried let f(x)=limx++εxF(xt)costdt

,then for a fixed value of x,by Dirichlet test,we can see the f(x)=limx++εxF(xt)costdt

is convergence,then I have no idea about the next step.:(

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...