Let F(x),G(x) be nonnegative decreasing functions in [0,+∞), withlimx→+∞x(F(x)+G(x))=0
(1) Prove that: ∀ε>0,we have limx→+∞∫+∞εxF(xt)costdt=0
(2) If we have limn→+∞∫+∞0(F(t)−G(t))costndt=0
then prove that
limx→0∫+∞0(F(t)−G(t))cos(xt)dt=0
I tried let f(x)=limx→+∞∫+∞εxF(xt)costdt
,then for a fixed value of x,by Dirichlet test,we can see the f(x)=limx→+∞∫+∞εxF(xt)costdt
is convergence,then I have no idea about the next step.:(
No comments:
Post a Comment