Tuesday, 22 January 2013

analysis - Integral $int_0^pi cot(x/2)sin(nx),dx$



It seems that $$\int_0^\pi \cot(x/2)\sin(nx)\,dx=\pi$$ for all positive integers $n$.



But I have trouble proving it. Anyone?


Answer



Use this famous sum:



$$1+2\cos x+2\cos 2x+\cdots+2\cos nx=\frac{\sin (n+\frac{1}{2})x}{\sin \frac{x}{2}}=\sin nx\cot\left(\frac{x}{2}\right)+\cos nx$$




Hence



$$\int_0^{\pi}\cot \left(\frac{x}{2}\right)\sin n x\,dx=\int_0^{\pi}1+2\cos x+2\cos 2x+\cdots +\cos nx\,dx$$



All cosine terms obviously evaluate to zero.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...