Monday, 28 January 2013

How prove this limits limxto0+fracxcdotfraclogxlog(1x)logleft(fraclogxlog(1x)right)=1



show this limits
lim



I fell this limits not easy to show it.




since
\log{(1-x)}=-x+o(x^2)\Longrightarrow x\cdot\dfrac{\log{x}}{\log{(1-x)}}\approx -\log{x}+o(\log{x})
and I know
\dfrac{\log{x}}{\log{(1-x)}}\to +\infty
then I don't know How to deal this problem




This Problem is from Analysis problem book exercise (MIn hui xie)



Answer




As x\to 0^+ we have
\frac{\log x}{\log(1-x)}\sim -\frac{\log x}{x}=\frac{1}{x}\log\left(\frac{1}{x} \right)
and then
\frac{x\cdot\frac{\log{x}}{\log{(1-x)}}}{\log{\left(\frac{\log{x}}{\log{(1-x)}}\right)}}\sim \frac{\log(\frac{1}{x})}{\log\left(\frac{1}{x}\log(\frac{1}{x})\right)}
Changing u=\frac{1}{x}, we have using de l'Hopital's rule
\lim_{u\to\infty}\frac{\log u}{\log(u\log u)}=\lim_{u\to\infty}\frac{\log u}{\log u +1}=1.
So your limit is
\lim_{x\to 0^{+}}\dfrac{x\cdot\dfrac{\log{x}}{\log{(1-x)}}}{\log{\left(\dfrac{\log{x}}{\log{(1-x)}}\right)}}=1.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...