Saturday, 7 December 2013

calculus - Does the series $sumlimits_{n=1}^{infty}ntanleft(frac {pi}{2^{n+1}}right)$ converge or diverge?



Does the series $\sum\limits_{n=1}^{ \infty}n\tan\left( \dfrac { \pi}{2^{n+1}}\right)$ converge or diverge? My idea was to use the limit comparison test and $\sum\limits_{n=1}^{\infty} \dfrac {n}{2^{n}}$, but then I don't know what to do with the tangent which in the limit is 0.


Answer



Hint: note that
$$
\lim_{n \to \infty} \frac{\tan\left(\frac{\pi}{2^{n+1}}\right)}{\left(\frac{\pi}{2^{n+1}}\right)} = 1
$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...