I'm trying to find out whether this Series
$\sum_{n=2}^{\infty } a_{n}$ converges or not when
$$a_{n}=\frac{1}{\log (n!)}$$
I tried couple of methods, among them: d'Alembert $\frac{a_{n+1}}{a_{n}}$, Cauchy condensation test $\sum_{n=2}^{\infty } 2^{n}a_{2^n}$, and they both didn't work for me.
Edit: I can't use stirling, and integral.
Thank you
Answer
Hint: You can use $$a_n = \frac{1}{\log n!} = \frac{1}{\sum_{k=1}^n \log k} \geq
\frac{1}{n \log n}.$$
Then use the Cauchy condensation test...
No comments:
Post a Comment