Friday, 6 December 2013

real analysis - Find all functions satisfy an equality

The question: Find all functions $f$ defined over $\mathbb{R}$ satisfying the equality: $\forall x,y \in \mathbb{R}$ $$f(y - f(x)) = f(x^{2002} - y) - 2001y f(x)$$



How do I approach (any hints) to solve the problem above?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...