The question: Find all functions $f$ defined over $\mathbb{R}$ satisfying the equality: $\forall x,y \in \mathbb{R}$ $$f(y - f(x)) = f(x^{2002} - y) - 2001y f(x)$$
How do I approach (any hints) to solve the problem above?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment