$$\lim_{x\to 0}\frac{\sqrt[5]{1+\sin(x)}-1}{\ln(1+\tan(x))}$$
How to evaluate the limit of this function without using L'Hôpital's rule?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment