Monday, 1 February 2016

Evaluate the limit without using the L'Hôpital's rule

$$\lim_{x\to 0}\frac{\sqrt[5]{1+\sin(x)}-1}{\ln(1+\tan(x))}$$



How to evaluate the limit of this function without using L'Hôpital's rule?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...