Wednesday, 10 February 2016

number theory - Linear Congruence using canonical complete residue system

Use the Euclidean Algorithm to find a member $x$ of the canonical complete residue system modulo $213$ that satisfies $24x \equiv 123 (\bmod 213)$.






My work so far:




$ 24x-123=213y $



$24x-213y=123 $



Using the Euclidean Algorithm:



$-213=-8(24)-21$



$\ \quad 24=-1(-21)+3$




$\ -21=-7(3)+0$



So



$3=24+1(-21)$



$3=24+1(-213+8(-24))$



$3=9(24)+1(-213)$




Then I multiply by 41 to get 123



$123=369(24)+41(-213)$



But $369$ is not in the canonical complete residue system for $213$. What am I doing wrong??






Then I need to find all the solutions to $24x\equiv 123 (\bmod 213)$. Help!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...