Use the Euclidean Algorithm to find a member $x$ of the canonical complete residue system modulo $213$ that satisfies $24x \equiv 123 (\bmod 213)$.
My work so far:
$ 24x-123=213y $
$24x-213y=123 $
Using the Euclidean Algorithm:
$-213=-8(24)-21$
$\ \quad 24=-1(-21)+3$
$\ -21=-7(3)+0$
So
$3=24+1(-21)$
$3=24+1(-213+8(-24))$
$3=9(24)+1(-213)$
Then I multiply by 41 to get 123
$123=369(24)+41(-213)$
But $369$ is not in the canonical complete residue system for $213$. What am I doing wrong??
Then I need to find all the solutions to $24x\equiv 123 (\bmod 213)$. Help!
No comments:
Post a Comment