Wednesday, 3 February 2016

trigonometry - Sum of $sum_{n=1}^{N} cos(kx-omega t +ntheta)$




I am familiar with Lagrange's trigonometric identities which are
$$\begin{align}
\sum_{n=1}^N \sin (n\theta) & = \frac{1}{2}\cot\frac{\theta}{2}-\frac{\cos((N+\frac{1}{2})\theta)}{2\sin(\frac{1}{2}\theta)}\\
\sum_{n=1}^N \cos (n\theta) & = -\frac{1}{2}+\frac{\sin((N+\frac{1}{2})\theta)}{2\sin(\frac{1}{2}\theta)}
\end{align}
$$



and I what to find out what happens to this sum when I plug in a, let's say, $kx-\omega t$ inside the cosine function:



$$\sum_{n=1}^{N} \cos(kx-\omega t +n\theta)=?$$




is it simply $\dfrac{\sin \left(\phi \left(N+\frac{1}{2}\right)+kx-\omega t\right)}{2 \left(\sin \left(kx-\omega t+\frac{\phi }{2}\right)\right)}-\dfrac{1}{2}$?


Answer



$$\begin{align}
\sum_{n=1}^N \cos(n\,\theta+a)&=\sum_{n=1}^N \bigl(\cos(n\,\theta)\cos a-\sin(n\,\theta)\sin a\bigr)\\
&=\cos a\sum_{n=1}^N\cos(n\,\theta)-\sin a\sum_{n=1}^N \sin(n\,\theta).
\end{align}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...