I am familiar with Lagrange's trigonometric identities which are
$$\begin{align}
\sum_{n=1}^N \sin (n\theta) & = \frac{1}{2}\cot\frac{\theta}{2}-\frac{\cos((N+\frac{1}{2})\theta)}{2\sin(\frac{1}{2}\theta)}\\
\sum_{n=1}^N \cos (n\theta) & = -\frac{1}{2}+\frac{\sin((N+\frac{1}{2})\theta)}{2\sin(\frac{1}{2}\theta)}
\end{align}
$$
and I what to find out what happens to this sum when I plug in a, let's say, $kx-\omega t$ inside the cosine function:
$$\sum_{n=1}^{N} \cos(kx-\omega t +n\theta)=?$$
is it simply $\dfrac{\sin \left(\phi \left(N+\frac{1}{2}\right)+kx-\omega t\right)}{2 \left(\sin \left(kx-\omega t+\frac{\phi }{2}\right)\right)}-\dfrac{1}{2}$?
Answer
$$\begin{align}
\sum_{n=1}^N \cos(n\,\theta+a)&=\sum_{n=1}^N \bigl(\cos(n\,\theta)\cos a-\sin(n\,\theta)\sin a\bigr)\\
&=\cos a\sum_{n=1}^N\cos(n\,\theta)-\sin a\sum_{n=1}^N \sin(n\,\theta).
\end{align}$$
No comments:
Post a Comment