Prove that:
$$\dfrac{1}{\cos x+\cos {3x}} + \dfrac{1}{\cos x+ \cos {5x}}+\dots+\dfrac{1}{\cos x+ \cos {(2n+1)x}} \\= \frac{1}{2}\csc x \,[ \tan{(n+1)x}-\tan{x}]$$
I tried to prove this using the regular formulas. But failed. Please help me.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment