$$\lim_{n \to \infty} \frac{1}{n} \cdot\ln(3^\frac{n}{1}+3^\frac{n}{2}+\cdots+3^\frac{n}{n})$$
I tried to apply the squeeze theorem, but I can't manage to solve it.
Answer
The squeeze theorem is a good idea. $$
\ln(3^n)\leq \ln(3^\frac{n}{1}+3^\frac{n}{2}+\cdots+3^\frac{n}{n}) \leq \ln(n\cdot3^n)
$$
No comments:
Post a Comment