Wednesday, 6 September 2017

calculus - Compute $lim_{n to infty} frac{1}{n} ln(3^frac{n}{1}+3^frac{n}{2}+cdots+3^frac{n}{n})$



$$\lim_{n \to \infty} \frac{1}{n} \cdot\ln(3^\frac{n}{1}+3^\frac{n}{2}+\cdots+3^\frac{n}{n})$$
I tried to apply the squeeze theorem, but I can't manage to solve it.


Answer



The squeeze theorem is a good idea. $$
\ln(3^n)\leq \ln(3^\frac{n}{1}+3^\frac{n}{2}+\cdots+3^\frac{n}{n}) \leq \ln(n\cdot3^n)
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...