Question:
$ Prove\ for\ all\ natural\ n:\ \frac{1}{n+1}+\frac{1}{n+2}+\ldots +\ \frac{1}{3n+1}>1 $
I know that the base case holds. I.H: Assume it is true for $n = k$. Now I am not sure how to prove it for $n = k+1$.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment