Wednesday, 20 September 2017

sequences and series - Evaluating $limlimits_{ n to +infty} (sqrt{n}( e^{1/sqrt{n}} -2^{1/sqrt{n}}))^3$



I've got problems with calculating the limits in these two examples:



$$\begin{align*}
&\lim_{ n \to +\infty}\left( \sqrt{n}\cdot \left( e^{\frac{1}{\sqrt{n}}} -2^{\frac{1}{\sqrt{n}}} \right) \right)^3\\

&\lim_{n \to +\infty} n\cdot \sqrt{e^{\frac1n}-e^{\frac{1}{n+1}}}
\end{align*}$$



Can anybody help?


Answer



For the first one, let $u=\frac1{\sqrt n}$, and note that $u\to 0^+$ as $n\to\infty$. Then $$\sqrt n\left(e^{\frac1{\sqrt n}}-2^{\frac1{\sqrt n}}\right)=\frac1u\left(e^u-2^u\right)=\frac{e^u-2^u}u\;,$$ so you’re interested in $$\lim_{u\to 0^+}\frac{(e^u-2^u)^3}{u^3}\;,$$ and I expect that you know a way to deal with that kind of limit.



I can make a similar trick work for the second one, but it gets a bit messier. First, I’m actually going to look at $$\lim_{n\to\infty}n^2\left(e^{\frac1n}-e^{\frac1{n+1}}\right)$$ and then take its square root to get the desired limit.



Let $u=\frac1n$, so that $n=\frac1u$, $n+1=\frac1u+1=\frac{u+1}u$, and $\frac1{n+1}=\frac{u}{u+1}=1-\frac1{u+1}$. Again $u\to 0^+$ as $n\to\infty$, so I look at $$\lim_{u\to 0^+}\frac{e^u-e^{1-\frac1{u+1}}}{u^2}\;;$$ applying l’Hospital’s rule takes a little more work this time, but it’s still eminently feasible.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...