Calculate the following limit:
$$\displaystyle\lim_{x\to +\infty}x\left(\sqrt{x^{2}+1}-\sqrt[3]{x^{3}+1}\right)$$
I need find this limit without l'Hospital or Taylor series.
Wolfram alpha gives $\frac{1}{2}$
My try is:
Let: $a=\sqrt{1+x^{2}}$ and $b=\sqrt[3]{1+x^{3}}$
And we know that:
$a-b=\frac{a^{3}-b^{3}}{a^{2}+b^{2}+ab}$
But after applied this I find again the problems $0.+\infty$ indeterminate
No comments:
Post a Comment