Monday, 18 September 2017

number theory - Multiplicative Inverse Question




What is the multiplicative inverse of $9\pmod{37}$?
I've done the Euclidean algorithm and found the gcd is $1$. I'm stuck on using the extended Euclidean algorithm. I'm confused because I'm left with $$37=(9\times 4)+1$$ and can't substitute it anywhere.


Answer



$37=9\cdot 4 + 1$ therefore $9\cdot 4 + 1\equiv 0\pmod{37}$



$9\cdot 4 \equiv -1\pmod{37}$



$9\cdot (-4)\equiv 1\pmod{37}$



$9\cdot (37-4)\equiv 1\pmod{37}$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...