Wednesday, 13 September 2017

limits - Evaluation $lim_{nto infty}frac{{log^k n}}{n^{epsilon}}$




Evaluate where $\epsilon>0,k\geqslant 1$ are constants



$$\lim_{n\to \infty}\frac{{\log^k n}}{n^{\epsilon}}$$





L'Hopital can't help here, also I tried to use $\log$ rules but it didn't helped, I know that $\log$ grows slower then polynom, but $n^\epsilon$ is not polynom, how can I evaluate this limit? thank you


Answer



Write
$$
\frac{(\log n)^k}{n^\varepsilon}=
\left(\frac{\log n}{n^{\varepsilon/k}}\right)^{\!k}
$$
For $r>0$, we have

$$
\lim_{x\to\infty}\frac{\log x}{x^r}=
\lim_{x\to\infty}\frac{1/x}{rx^{r-1}}=
\lim_{x\to\infty}\frac{1}{rx^r}=0
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...