Evaluate where ϵ>0,k⩾ are constants
\lim_{n\to \infty}\frac{{\log^k n}}{n^{\epsilon}}
L'Hopital can't help here, also I tried to use \log rules but it didn't helped, I know that \log grows slower then polynom, but n^\epsilon is not polynom, how can I evaluate this limit? thank you
Answer
Write
\frac{(\log n)^k}{n^\varepsilon}= \left(\frac{\log n}{n^{\varepsilon/k}}\right)^{\!k}
For r>0, we have
\lim_{x\to\infty}\frac{\log x}{x^r}= \lim_{x\to\infty}\frac{1/x}{rx^{r-1}}= \lim_{x\to\infty}\frac{1}{rx^r}=0
No comments:
Post a Comment