Consider this integral (1)
∫∞0γ+lnxex⋅1−cosxxdx=12⋅π−ln44⋅π+ln44
Recall a well-known integral for γ:
∫∞0e−xlnxdx=−γ.
Making an attempt:
I am not sure, what to do...
Recall: cosx=eix+e−ix2, then (1) becomes
∫∞0γ+lnxex⋅2−eix−e−ix2xdx
Or using e−x series, then (1) becomes
∞∑n=0(−1)nn!∫∞0(γ+lnx)(1−cosx)xn−1dx
blue=∫∞0(γ+lnx)xn−1dx−∫∞0(γ+lnx)cos(x)xn−1dx=I1−I2
Indefinite integral of I1=xnn2(nlnx+nγ−1)+C
Put in the limit and I1 is diverges and I2 it is a lengthy IBP and it also diverges.
How to prove (1)?
Answer
Assuming that a>1,
I(a)=∫∞0γ+lnxeax1−cosxxdx=−∫∞0γ+lnxeax∞∑n=1(−1)nx2n−1(2n)!dx=−∞∑n=1(−1)n(2n)!∫∞0(γ+lnx)e−axx2n−1dx=−∞∑n=1(−1)n(2n)!(γΓ(2n)a2n+Γ′(2n)−ln(a)Γ(2n)a2n)=−∞∑n=1(−1)n2n(γ+ψ0(2n)−ln(a)a2n)=−∞∑n=1(−1)n2nH2n−12n−ln(a)a2n=−∞∑n=1(−1)n2nH2na2n+∞∑n=1(−1)n4n21a2n+ln(a)∞∑n=1(−1)n2n1a2n =−∞∑n=1(−1)n2nH2na2n+14Li2(−1a2)−ln(a)2ln(1+1a2).
From the ordinary generating function for the harmonic numbers, we see that f(z)=∞∑n=1(−1)nHnnzn=−∫z0log(1+t)t(1+t)dt=Li2(−z)+12ln2(1+z),|z|<1.
Therefore,∞∑n=1(−1)n2nH2na2n=12[f(ia)+f(−ia)]=12[Li2(−ia)+12ln2(1+ia)+Li2(ia)+12ln2(1−ia)]=14[Li2(−1a2)+ln2(1+ia)+ln2(1−ia)],
and I(a)=−14[ln2(1+ia)+ln2(1−ia)+2ln(a)ln(1+1a2)]=−18[ln2(1+1a2)−4arctan2(1a)+4ln(a)ln(1+1a2)].
Letting a↓1, we get I(1)=−18ln2(2)+12(π216)=π2−4ln2(2)32=π2−ln2(4)32.
For evaluation purposes, I assumed that a>1. But the result should hold for a>0.
(1) https://en.wikipedia.org/wiki/Digamma_function
(2) https://en.wikipedia.org/wiki/Digamma_function#Relation_to_harmonic_numbers
(3) https://en.wikipedia.org/wiki/Polylogarithm
(4) https://en.wikipedia.org/wiki/Polylogarithm#Properties
No comments:
Post a Comment