Tuesday, 5 December 2017

calculus - How to show intinfty0gamma+lnxoverexcdot1cosxoverx,mathrmdx=1over2cdotpiln4over4cdotpi+ln4over4?



Consider this integral (1)




0γ+lnxex1cosxxdx=12πln44π+ln44





Recall a well-known integral for γ:



0exlnxdx=γ.
Making an attempt:



I am not sure, what to do...



Recall: cosx=eix+eix2, then (1) becomes




0γ+lnxex2eixeix2xdx



Or using ex series, then (1) becomes



n=0(1)nn!0(γ+lnx)(1cosx)xn1dx



blue=0(γ+lnx)xn1dx0(γ+lnx)cos(x)xn1dx=I1I2



Indefinite integral of I1=xnn2(nlnx+nγ1)+C




Put in the limit and I1 is diverges and I2 it is a lengthy IBP and it also diverges.



How to prove (1)?


Answer



Assuming that a>1,



I(a)=0γ+lnxeax1cosxxdx=0γ+lnxeaxn=1(1)nx2n1(2n)!dx=n=1(1)n(2n)!0(γ+lnx)eaxx2n1dx=n=1(1)n(2n)!(γΓ(2n)a2n+Γ(2n)ln(a)Γ(2n)a2n)=n=1(1)n2n(γ+ψ0(2n)ln(a)a2n)=n=1(1)n2nH2n12nln(a)a2n=n=1(1)n2nH2na2n+n=1(1)n4n21a2n+ln(a)n=1(1)n2n1a2n =n=1(1)n2nH2na2n+14Li2(1a2)ln(a)2ln(1+1a2).



From the ordinary generating function for the harmonic numbers, we see that f(z)=n=1(1)nHnnzn=z0log(1+t)t(1+t)dt=Li2(z)+12ln2(1+z),|z|<1.




Therefore,n=1(1)n2nH2na2n=12[f(ia)+f(ia)]=12[Li2(ia)+12ln2(1+ia)+Li2(ia)+12ln2(1ia)]=14[Li2(1a2)+ln2(1+ia)+ln2(1ia)],



and I(a)=14[ln2(1+ia)+ln2(1ia)+2ln(a)ln(1+1a2)]=18[ln2(1+1a2)4arctan2(1a)+4ln(a)ln(1+1a2)].



Letting a1, we get I(1)=18ln2(2)+12(π216)=π24ln2(2)32=π2ln2(4)32.



For evaluation purposes, I assumed that a>1. But the result should hold for a>0.







(1) https://en.wikipedia.org/wiki/Digamma_function



(2) https://en.wikipedia.org/wiki/Digamma_function#Relation_to_harmonic_numbers



(3) https://en.wikipedia.org/wiki/Polylogarithm



(4) https://en.wikipedia.org/wiki/Polylogarithm#Properties


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...