Thursday, 7 December 2017

number theory - Solving fracxy mod m efficiently?

We know that :
(x.y) mod m = ( (x mod m) . (y mod m) ) mod m




Is there any property for:
xy mod m like xmodmymodm mod m . I hope this fails.



I want to find an efficient way to solve:
x1.x2.x3...xiy1.y2.y3...yjmod m
where, xi,xj,m109;
and x1.x2.x3...xiy1.y2.y3...yj results in an integer



Edit: If a mod m= x and bmodm= y, then can we express (ab mod m) in terms of x, y and m ??




Any help will be appreciated :) Thanks

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...