I'm toying around with statistics and calculus for a project of mine and I'm trying to find the simplest/fastest way to integrate this formula :
$$\int_{-\infty}^{+\infty} e^{-x^2/2} dx$$
- I do not want to use a table.
- I'm taking this opportunity to get more practice with my new calculus skills
- It seems that a Taylor series approx is the only way to go
Best Regards
Answer
If we set $$I := \int_{\mathbb{R}} \exp \left(- \frac{x^2}{2} \right) \, dx,$$
then
$$I^2 = \int_{\mathbb{R}} \int_{\mathbb{R}} \exp \left( - \frac{x^2+y^2}{2} \right) \, dx \, dy.$$
Introducting polar coordinates, i.e.
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix},$$
yields
$$I^2 = \int_{r=0}^{\infty} \int_{\varphi=0}^{2\pi} e^{-r^2/2} r \, dr \, d\varphi = \left( \int_{0}^{\infty} r e^{-r^2/2} \, dr \right) \left( \int_{\varphi=0}^{2\pi} d \varphi \right).$$
This expression can be easily calculated.
No comments:
Post a Comment