Prove the following: If a∣bc, then a∣gcd.
I tried to set \gcd(a, b) to b and used the fundamental theorem of arithmetic to prove that it is divisible by a, but I can't prove that a \mid bc, if and only if a\mid b and a\mid c. Please help. Thanks.
Prove the following: If a∣bc, then a∣gcd.
I tried to set \gcd(a, b) to b and used the fundamental theorem of arithmetic to prove that it is divisible by a, but I can't prove that a \mid bc, if and only if a\mid b and a\mid c. Please help. Thanks.
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment