Wednesday, 10 January 2018

Number Theory GCD Homework Problem



This is a problem from my homework:



If abc, show that agcd(a,b)gcd(a,c).



(Hint: use Euclid's lemma: If a0b0c0, with gcd(a0,b0)=1, then a0c0.)



I tried setting a0=a, c0=c, and b0=gcd(a,b), to try to find gcd(gcd(a,b),a), but I stopped here as I wasn't able to go further.




Thanks in advance!


Answer



a0=a,b0=gcd does not meet the condition \gcd(a_0,b_0)=1



The key is that \gcd\left(\frac{a}{\gcd(a,b)},\frac{b}{\gcd(a,b)}\right)=1



let a_0=\frac{a}{\gcd(a,b)},b_0=\frac{b}{\gcd(a,b)},c_0=c
we have \begin{align}a|bc\Rightarrow & a_0*\gcd(a,b)|b_0*\gcd(a,b)*c_0\\\Rightarrow & a_0|b_0c_0\end{align}
and \gcd(a_0,b_0)=1 Thus a_0|c_0 \Rightarrow \frac{a}{gcd(a,b)}|c

obviously \frac{a}{gcd(a,b)}|a. So \frac{a}{gcd(a,b)}|\gcd(a,c)
ie. a|\gcd(a,b)\gcd(a,c)


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...