Saturday, 20 January 2018

elementary number theory - Prove that $sqrt 5$ is irrational



I have to prove that $\sqrt 5$ is irrational.



Proceeding as in the proof of $\sqrt 2$, let us assume that $\sqrt 5$ is rational. This means for some distinct integers $p$ and $q$ having no common factor other than 1,



$$\frac{p}{q} = \sqrt5$$



$$\Rightarrow \frac{p^2}{q^2} = 5$$




$$\Rightarrow p^2 = 5 q^2$$



This means that 5 divides $p^2$. This means that 5 divides $p$ (because every factor must appear twice for the square to exist). So we have, $p = 5 r$ for some integer $r$. Extending the argument to $q$, we discover that they have a common factor of 5, which is a contradiction.



Is this proof correct?


Answer



It is, but I think you need to be a little bit more careful when explaining why $5$ divides $p^2$ implies $5$ divides $p$. If $4$ divides $p^2$ does $4$ necessarily divide $p$?


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...