Thursday, 25 January 2018

integration - Finding $intlimits_1^infty frac{sin^4(log x)}{x^2 log x} mathrm{d}x$




How do we prove that $$\int_{1}^{\infty} \frac{\sin^4(\log x)}{x^2 \log x} \mathrm{d}x=\dfrac{\log\left(\dfrac{625}{17}\right)}{16}$$



I tried substitutions like $\log x=\arcsin t$, but it doesn't seem to work out. Please help me out. Thank you.


Answer



The integral screams for a sub $x=e^u$; the result is



$$\int_0^{\infty} du \, e^{-u} \frac{\sin^4{u}}{u} $$



This is very computable by introducing a parameter and differentiating under the integral. In this case, consider




$$F(k) = \int_0^{\infty} du \, e^{-k u} \frac{\sin^4{u}}{u} $$



$$F'(k) = -\int_0^{\infty} du \, e^{-k u} \sin^4{u} $$



$F'(k)$ is relatively easy to compute using the fact that $\sin^4{u} = \frac{3}{8}-\frac12 \cos{2 u} + \frac18 \cos{4 u}$, and that



$$\int_0^{\infty} du \, e^{-k u} \cos{m u} = \frac{k}{k^2+m^2}$$



Thus




$$F'(k) = -\frac{3}{8 k} + \frac12 \frac{k}{k^2+4} - \frac18 \frac{k}{k^2+16} $$



and



$$F(k) = -\frac1{16} \log{\left [ \frac{k^6 (k^2+16)}{(k^2+4)^4} \right ]} + C$$



To evaluate $C$, we must consider $\lim_{k \to \infty} F(k)$ because $F(0)$ represents a non convergent integral. Because the limit is zero, we must have $C=0$. The integral we seek is then



$$F(1) = \frac1{16} \log{\frac{625}{17}}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...