Tuesday, 2 January 2018

real analysis - Show that limlimitsntoinftyfrac1nsumlimitsn1k=0eik2=0




TL;DR : The question is how do I show that limn1nn1k=0eik2=0 ?



More generaly the question would be : given an increasing sequence of integers (uk) and an irrational number α, how do I tell if limn1nn1k=0e2iπαuk=0 ? I'm not asking for a criterium for completely general sequences, an answer for sequences like uk=k2, vk=k! or wk=p(k) with pZ[X] would already be awesome.



A little explanation about this question :



In Real and Complex Analysis by Rudin there is the folowing exercise :



Let f be a continuous, complex valued, 1-periodic function and α an irrational number. Show that

limn1nn1k=0f(αk)=10f(x)dx. (We say that (αk)k is uniformly distributed in R/Z)



With the hint given by Rudin the proof is pretty straightforward : First one show that this is true for every fj=exp(2iπj) with jZ. Then using density of trigonometric polynomials in (C01(R),) and the fact that the 0-th Fourier coefficient of f is it's integral over a period, one can conclude using a 3ε argument. This proof is possible because one can compute explicitly the sums 1nn1k=0e2iπjαk=1n1e2iπjαn1e2iπjα0 when n and jZ.



Now using a different approach (with dynamical systems and ergodic theorems) Tao show in his blog that (αk2)k is uniformly distributed in R/Z (corollary 2 in this blog). I'd like to prove this result using the methods of the exercice of Rudin, but this reduce to show that 1nn1k=0e2iπjαk20 when n and jZ.

Hence my question.



P.S. When i ask wolfram alpha to compute k0eik2 it answer me with some particular value of the Jacobi-theta function. Of course the serie is not convergent but maybe it's some kind of resummation technique or analytic continuation. I'm not familiar with these things but it might be interesting to look in that direction.


Answer



Gauss sums




Your sum is strongly related to the Gauss sum. The usual trick is to compute the modulus. This works particularly smoothly over Z/pZ as with usual Gauss sums, but essentially it works here too: If S=n1k=0eik2, then
\begin{align}
|S|^2 &= \sum_{k=0}^{n-1} \sum_{k'=0}^{n-1} e^{i(k'^2 - k^2)}\\
&= \sum_{h=-n+1}^{n-1} \sum_{\substack{0\leq k\end{align}
where we have written h=kk. Now the inner sum is a geometric series with at most n terms and with common ratio ei2h, so we have
\begin{equation}
\left|\sum_{\substack{0\leq k\end{equation}
Thus

|S|22n1h=0min(2|1ei2h|,n).


Now fix ϵ>0. Since (h/π)h=1 is equidistributed mod 1 the number of h=0,,n1 for which |1ei2h|ϵ is O(ϵn), so
|S|220h<n|1ei2h|ϵn+20h<n|1ei2h|>ϵ2|1ei2h|O(ϵn2)+O(ϵ1n).

Since ϵ was arbitrary this implies |S|2=o(n2), and hence |S|=o(n).



The van der Corput trick




The only thing we really used about k2 here is that for fixed h we understand the behaviour of the sequence (k+h)2k2, and indeed if you repeat the above calculation but with a judicious application of the Cauchy--Schwarz inequality then you prove a general fact called van der Corput's difference theorem (aka Weyl's differencing trick): if (uk) is a sequence such that for each h1 the sequence (uk+huk) is equidistributed modulo 1, then (uk) is equidistributed modulo 1. See for example Corollary 2 on Tao's blog here. This implies for example that n1k=0ei2πp(k)=o(n) for every nonconstant polynomial p with irrational leading coefficient.



Other sequences



In general there is no hard and fast rule about lim1nn1k=0ei2παuk, i.e., about equidistribution of (uk), and in fact the other sequence you mention, k!, is indeed very different. To take a slightly simpler example which is qualitatively similar, consider uk=2k. Let fn(α) be the exponential sum 1nnk=1ei2πα2k. Then it is a well known consequence of the ergodic theorem that fn(α) converges to 0 for almost every α. On the other hand clearly fn(α)1 for every dyadic rational α, as α2k is eventually constantly 0 mod 1. But then by Baire category theorem we must have for a comeagre set of α that fn(α) does not converge to 0. Thus it's difficult to say anything too general about fn(α), especially for particular α. For instance, proving limnfn(2)=0 is a famous open problem.



Test your understanding



Here are some related problems to think about, not all of which I know off-hand how to answer!





  1. Is (n) equidistributed mod 1?

  2. What about (logn)?

  3. Show that there are some α for which fn(α) does not converge.

  4. Determine {z:fn(α)z for some α}.

  5. Let gn(α)=1nnk=1ei2παk!. Prove statements for gn analogous to those we proved for fn.

  6. Is there a power of 2 with at least 7 decimal digits equal to 7?

  7. Think of other silly (but not open) problems like these ones.



No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...