Thursday, 18 January 2018

real analysis - Approximation of $ int_{0}^{infty} frac{ln(t)}{sqrt{t}}e^{-nt} mathrm dt,nrightarrowinfty $

How can I find the first term of the series expansion of



$$ \int_{0}^{\infty} \frac{\ln(t)}{\sqrt{t}}e^{-nt} \mathrm dt,n\rightarrow\infty ?$$




Or:



As $$ \int_{0}^{\infty} \frac{\ln(t)}{\sqrt{t}}e^{-nt} \mathrm dt = \frac{1}{\sqrt{n}}\int_{0}^{\infty} \frac{\ln(\frac{t}{n})}{\sqrt{t}}e^{-t} \mathrm dt $$



What is $$ \lim_{n\rightarrow\infty} \int_{0}^{\infty} \frac{\ln(\frac{t}{n})}{\sqrt{t}}e^{-t} \mathrm dt?$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...