Monday, 8 January 2018

divisibility - Extended Euclidean Algorithm problem



I'm confused about how to do the extended algorithm. For example, here's the gcd part

gcd(8000,7001)



$$\begin{align}8000 &= 7001\cdot1 + 999\\
7001&=999\cdot 7+8\\
999&=8\cdot 124+7\\
8&=7\cdot 1+1\\
7&=1\cdot 7+0\\
\gcd(8000,7001)&=1\end{align}$$



Now, the extended algorithm




$$\begin{align}1 &= 8 - 1\cdot7\\
&= 8 - 1\cdot(999 - 8\cdot124)\\
&= -1\cdot999 + 8\cdot125\end{align}$$



How do you get this 8*125 from the previous line?


Answer



$\begin{eqnarray}\!\text{By the distributive law}\ \ && \,8\:\!\ \overbrace{ -\, 1\cdot(999\,-\,8\cdot 124)}^{\textstyle -1\,(a\!-\!b) = -a\! +\! b\ }\\
&=&\ 8\cdot\color{#c00}1\, -\, 999\, +\, 8\cdot\color{#c00}{124}\\ &=&\ 8\cdot\color{#0a0}{ 125} - 999\ \ \,{\rm by}\ \ \color{#c00}{124 + 1} = \color{#0a0}{125}\end{eqnarray}$




This "back-substitution method" for the extended gcd is notoriously error-prone. Simpler to compute and easier to remember is the method described here., where we keep track of each remainder's expression as a linear combination of the gcd arguments. Executing that algorithm yields



$$\begin{array}{rrr}
8000 & 1 & 0\\
7001 & 0 & 1\\
999 & 1 & -1\\
8 & -7& 8\\
-1 & \!\!\color{#c00}{876} & \!\!\!\color{#0a0}{-1001}\end{array}$$



where each line $\,\ a\ \ b\ \ c\ \,$ means that $\ a = 8000\, b + 7001\, c.\ $ Therefore




$$ 1 = -\color{#c00}{876}\cdot 8000 + \color{#0a0}{1001}\cdot 7001$$



The linked post described the algorithm in great detail, in a way that is easy to remember.



Here is another example computing $\rm\ gcd(141,19),\,$ with the equations written explicitly



$$\rm\begin{eqnarray}
[\![1]\!]\ \ \ \, \color{#C00}{141}\!\ &=&\,\ \ 1&\cdot& 141\, +\ 0&\cdot& 19 \\
[\![2]\!]\quad\ \color{#C00}{19}\ &=&\,\ \ 0&\cdot& 141\, +\ 1&\cdot& 19 \\

\color{#940}{[\![1]\!]-7\,[\![2]\!]}\, \rightarrow\, [\![3]\!]\quad\ \ \ \color{#C00}{ 8}\ &=&\,\ \ 1&\cdot& 141\, -\ 7&\cdot& 19 \\
\color{#940}{[\![2]\!]-2\,[\![3]\!]}\,\rightarrow\,[\![4]\!]\quad\ \ \ \color{#C00}{3}\ &=& {-}2&\cdot& 141\, + 15&\cdot& 19 \\
\color{#940}{[\![3]\!]-3\,[\![4]\!]}\,\rightarrow\,[\![5]\!]\quad \color{#C00}{{-}1}\ &=&\,\ \ 7&\cdot& 141\, -\color{#0A0}{ 52}&\cdot& \color{#0A0}{19} \end{eqnarray}\qquad\qquad\qquad\quad$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...