I am wondering how to prove $$\lim_{x\to \infty} \frac{e^x}{x^n}=\infty$$
I was thinking of using L'Hospital's rule? But then not sure how to do the summation for doing L'Hospital's rule n times on the denominator? Or whether it would be easier using longs like $\lim_{x\to \infty} \ln(e^x)-\ln(x^n)$?
Thank you!
Answer
You can certainly use L'Hopital's $n$ times. That is, for each $n\geq 0$ we have $$\lim_{x\to\infty}\frac{e^x}{x^n}=\lim_{x\to\infty}\frac{e^x}{nx^{n-1}}=\cdots=\lim_{x\to\infty}\frac{e^x}{n!}=\infty$$ since at each stage we are in $\frac{\infty}{\infty}$ indeterminate form.
No comments:
Post a Comment