Tuesday, 27 March 2018

calculus - Limit Proof of $e^x/x^n$




I am wondering how to prove $$\lim_{x\to \infty} \frac{e^x}{x^n}=\infty$$



I was thinking of using L'Hospital's rule? But then not sure how to do the summation for doing L'Hospital's rule n times on the denominator? Or whether it would be easier using longs like $\lim_{x\to \infty} \ln(e^x)-\ln(x^n)$?




Thank you!


Answer



You can certainly use L'Hopital's $n$ times. That is, for each $n\geq 0$ we have $$\lim_{x\to\infty}\frac{e^x}{x^n}=\lim_{x\to\infty}\frac{e^x}{nx^{n-1}}=\cdots=\lim_{x\to\infty}\frac{e^x}{n!}=\infty$$ since at each stage we are in $\frac{\infty}{\infty}$ indeterminate form.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...